

AFRL-IF-RS-TR-2006-148

Final Technical Report
April 2006

PROMETHEUS: ENHANCING THE QUALITY OF
SERVICE OF THE JOINT BATTLESPACE INFOSPHERE

Vanderbilt University

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2006-148 has been reviewed and is approved for publication.

APPROVED: /s/

DALE W. RICHARDS
Project Engineer

 FOR THE DIRECTOR: /s/

JAMES W. CUSACK
Chief, Information Systems Division
Information Directorate

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,

and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

APRIL 2006 Final Mar 2005 – Jan 2006
4. TITLE AND SUBTITLE

PROMETHEUS: ENHANCING THE QUALITY OF SERVICE OF THE JOINT
BATTLESPACE INFOSPHERE

5. FUNDING NUMBERS
C - FA8750-05-2-0128
PE - 62702F
PR - 558J
TA - BA

6. AUTHOR(S)
DOUGLAS C. SCHMIDT, KEN BIRMAN, MIKE REITER WU - P2

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Vanderbilt University
Station B, Box 7749,

8. PERFORMING ORGANIZATION
 REPORT NUMBER

110 21st Avenue, South
Nashville Tennessee 37235

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/IFSE

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER
 525 Brooks Road

AFRL-IF-RS-TR-2006-148 Rome New York 13441-4505

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Dale W. Richards/IFSE/ Dale.Richards@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODET

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. ABSTRACT (Maximum 200 Words)
This project investigated performance, scalability and associated quality of service (QoS) needs of the Global
Information Grid (GIG) and Network-Centric Enterprise Systems (NCES) in the context of large-scale DoD C2 and
C4ISR systems-of-systems (SoS) architectures, with additional attention to security considerations. The objectives of
this study were to (1) Explore and classify near-term (lower risk) requirements and opportunities; (2) Develop
prototypical proofs-of-concepts and evaluations aimed at establishing a technology baseline in the area of QoS-enabled
JBI; (3) Produce a guide to future R&D activities, (4) Develop an empirically-based understanding of the extent to which
QoS and other properties can be addressed in limited ways by these COTS platforms; and (5) Identify open questions
on which fundamental research may be required to close the gap between capabilities of existing SOA platforms,
including anticipated platform extensions, and requirements that arise in DoD contexts.

15. NUMBER OF PAGES
78

14. SUBJECT TERMS
Quality of Service (QoS), Global Information Grid (GIG), Network-Centric Enterprise
Systems (NCES), Joint Battlespace Infosphere (JBI), Systems of Systems (SoS), Service-
Oriented Architectures (SOA)

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

20. LIMITATION OF ABSTRACT
 OF REPORT

UNCLASSIFIED UNCLASSIFIED UL

 NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

i

Table of Contents

Executive Summary ... v

Overview of the Prometheus Project ... 1

1. Motivation and Approach .. 1

2. Summary of Results... 6

2.1. Focus Area 1: QoS-enabled Pub/Sub Technologies for Tactical Information Management............ 7

2.2. Focus Area 2: Scalable Fault- and Intrusion-Tolerance for Critical GIG Services 21

2.3. Focus Area 3: Scalable Enterprise Service-Oriented Architectures .. 26

2.4. Focus Area 4: A Framework for Demonstrating Access Control Policy Compliance 34

2.5. Summary of Results... 39

Study Recommendations for Future R&D Efforts... 41

3. Overview.. 41

4. A Unified Framework for QoS Policy Management ... 41

5. QoS-enabled Pub/Sub for Tactical Information Management... 46

6. Scalable Fault- and Intrusion-Tolerant Services.. 50

6.1. Multi-tier Fault- and Intrusion-Tolerant Services... 50

6.2. Dynamically Adjusting Membership in Fault- and Intrusion-Tolerant Services............................ 51

6.3. Deploying Quorum-based Services in Large-scale Systems .. 53

7. Technology for Scalable Clustered Service Architectures .. 53

8. Scalable Service/Server Discovery Architectures ... 55

9. Summary of Recommendations... 57

10. Concluding Remarks... 59

References.. 61

Acronyms... 69

 ii

List of Figures

Figure 1: QoS Needs in the GIG...2

Figure 2: Heterogeneity and Compartmentalization in the GIG...4

Figure 3: PCES Capstone Demo Scenario..8

Figure 4: Technology Layers in the PCES Capstone Demo...10

Figure 5: OMG DDS Architecture..12

Figure 6: Fewer Layers in the DDS Architecture ...13

Figure 7: DDS QoS Policies ...14

Figure 8: Moving Processing Close to the Data ...15

Figure 9: Subscribe to Meta-Events..15

Figure 10: ISISlab Testbed ..16

Figure 11: Pub/Sub Application Design ..17

Figure 12: Comparing Latency for Simple Data Types on Middleware Platforms.......................18

Figure 13: Comparing Jitter for Simple Data Types on Middleware Platforms............................19

Figure 14: Comparing Latency of Complex Data Types on Middleware Platforms....................20

Figure 15: Protecting GIG Services from Failures due to Faults and Intrusions...........................22

Figure 16: Distributed Services based on the SOA Model ..23

Figure 17: State Machine Replication..24

Figure 18: The Query/Update (Q/U) Protocol ...25

Figure 19: Performance Comparison of Q/U and BFT Under Load ...26

Figure 20: The Scope of a Typical SOA-based GIG Application ...27

Figure 21: Reality vs. Needs for Scaleable QoS-enabled Cluster ...28

Figure 22: Scalable Service/Server Discovery ..32

Figure 23: Direct Authorization...35

Figure 24: Indirect Authorization ..36

Figure 25: Delegation Chains ..37

Figure 26: Performance of New Credential-Collection and Policy-Demonstration Algorithm39

 iii

Figure 27: Configuring QoS Policies via Unified Framework ..46

Figure 28: Establishing QoS Data Flows Through the GIG..48

Figure 29: Design and Quality Assurance Tools ...49

Figure 30: Multi-tier Support for Fault- and Intrusion-Tolerant Services.....................................51

Figure 31: Dynamically Adjusting Membership in Fault- and Intrusion-Tolerant Services52

Figure 32: Deploying Quorum-based Services in Large-scale Systems..53

Figure 33: Automating Service Clustering ..54

Figure 34: Challenges of Reconciling Discovery Policy Rules...56

Figure 35: Future GIG QoS Needs Require Innovations in Both Platforms and Tools59

 iv

Executive Summary

This final report provides technical details concerning the results of activities performed for the

Prometheus project, which was a 9-month project that studied the performance, scalability and

associated quality of service (QoS) needs of the Global Information Grid (GIG) and Network-

Centric Enterprise Systems (NCES) in the context of large-scale DoD C2 and C4ISR systems-of-

systems (SoS) architectures, while also maintaining attention to security considerations. The task

objectives of this study were to

1. Explore and classify near term (lower risk) requirements and opportunities for

addressing GIG performance, scalability, and security,

2. Develop prototypical proofs-of-concepts and evaluation aimed at establishing a

baseline for technology in the area of QoS-enabled JBI, and

3. Produce annotated brief-outs and a final report to guide future R&D activities.

Our team evaluated the technical options and challenges associated with addressing DoD QoS

requirements in the context of GIG and NCES architectures – notably the Air Force Joint

Battlespace Infosphere (JBI) – on software platforms based on more conventional architectures

such as the most widely used object-oriented/component-based architectures (CORBA, J2EE and

.NET) and the emerging Web Services and Publish/Subscribe (Pub/Sub) architectures, which we

collectively refer to as Service-Oriented Architectures (SOAs). The results of our investigations

found that while the match between GIG/NCES systems and standard commercial-off-the-shelf

(COTS) SOA platforms holds much promise for moving the DoD away from traditional

proprietary, stove-piped systems, SOA technologies have significant shortcomings with respect

to their QoS support that can impede attempts to implement a GIG or NCES system directly on

today’s commercial SOA platforms.

The most serious deficiencies with SOAs are associated with QoS issues arising in systems that

perform time-critical event reporting, and that must offer robustness to failure and attack, self-

management, scalability, high-availability and advanced security features. Jointly, these

 v

limitations suggest that the development of GIG/NCES systems over COTS SOA platforms

could be a daunting task. Yet the potential benefits of doing so would be enormous since this

would make it possible for DoD system integrators to leverage the millions of lines of

commercial code-base expected in the SOA area and to work with well-supported commercial

products, thereby reducing total ownership costs for DoD Armed Services.

Our Prometheus investigation arrived at two types of recommendations for the Air Force and the

DoD:

1. A description of technical objectives that can be satisfied by working directly with SOA

platform features that either already exist in COTS products, or can reasonably be

anticipated in the two-to-three year time horizon, as well as an empirically-based

understanding of the extent to which QoS and other properties can be addressed in

limited ways by these COTS platforms.

2. Identification of open questions on which fundamental research may be required to close

the gap between capabilities of existing SOA platforms (even including anticipated

platform extensions) and requirements that arise in DoD contexts.

As a result of our work on Prometheus, we believe there are compelling reasons to look further at

SOA platforms, identify specific deficiencies, and then conduct additional R&D to determine

how existing technologies (or ones that might feasibly be developed within a few years) could be

used to overcome today’s limitations. Such a process would lead to a QoS-enabled GIG

implemented as much as possible on SOA platforms, but extended in ways that respond to

stringent DoD requirements.

 1

Overview of the Prometheus Project

1. Motivation and Approach

 Future DoD missions will run on system of systems (SoS) characterized by thousands of

platforms, sensors, decision nodes, weapons, and warfighters connected through heterogeneous

wireline and wireless networks to exploit information superiority and achieve strategic and

tactical objectives. The networks, operating systems, middleware, and applications that populate

SoSs offer a combinatoric number of configuration points for adjusting their resource

requirements and the quality of service (QoS) they deliver. The Global Information Grid (GIG)

is an emerging DoD SoS intended to organize and coordinate this large application and

technology space to manage information effectively and provide DoD planners and warfighters

with the right information to the right place at the right time across a range of enterprise business

systems and battlefield tactical systems.

This is an ambitious and intrinsically difficult goal. The technology base that inspires the SoS

vision is a largely commercial product line created by vendors in support of commercial

computing applications. Such applications run with only modest security, in networks that are

relatively stable, and where few applications face demanding quality of service requirements,

such as the need to deliver media with good real-time properties. Even the very largest

commercial systems (data centers operated by companies such as Amazon or Google) are

relatively “calm” environments when compared with the DoD networking infrastructure during

some future crisis. Yet the economic and productivity benefits of working with a COTS

technology base, modified in only limited ways, compel us to imagine building the future GG

SoS platform with precisely this set of components.

To successfully support enterprise and tactical information management needs, the emerging

GIG SoS technologies must provide (1) universal – yet secure – access to information from a

wide variety of sources running over a wide variety of hardware/software platforms and

networks, (2) an orchestrated information environment that aggregates, filters, and prioritizes the

delivery of this information to work effectively in the face of transient and enduring resource

constraints, (3) continuous adaptation to changes in the operating environment, such as dynamic

 2

network topologies, publisher/subscriber membership changes, and intermittent connectivity, and

(4) tailorable, actionable information that can be distributed in a timely manner in the appropriate

form and level of detail to users at all echelons.

As the Air Force and AFRL work to implement and build upon the GIG architecture and vision,

they will confront significant challenges in the area of tactical information management. In

particular, the commercial Web Services technologies and standards on which the GIG is

currently based cannot address the real-time quality of service (QoS) requirements of tactical

information management, several of which are shown in Figure 1, as described below.

Conventional Web Service technologies are well matched to enterprise environments, such as

centralized data centers whose computers are connect via wireline networks, but are poorly

suited for tactical environments due to their lack of QoS policies and real-time operating system

integration, as well as high time/space overhead.

(a) Differentiated QoS Flows Through the GIG (b) Large Number of Clients & Resources

Figure 1: QoS Needs in the GIG

The Prometheus project was a 9-month study of the performance and scalability challenges

currently confronting the GIG from a perspective informed by state-of-the-art insight in real-

time, security, and reliable computing technologies. Our goal was to explore Air Force needs

against the context of these COTS solutions and offer recommendations to the Air Force where

gaps could be identified. We believe that the Air Force has gained a deep and subtle

 3

understanding of the challenges surrounding information management in GIG settings. There

remain, however, the following unique challenges that must be overcome to fully realize the

promise of the GIG in large-scale DoD C2 and C4ISR systems-of-systems deployments:

• DoD applications generate high data rates, often with time-sensitivity or other QoS

requirements. The GIG will need the capability to offer these types of guarantees, i.e., such

that the right data will reach the right consumers where and when required and that critical

QoS properties will be assured even under attack or other stresses. Initial work on the GIG

deferred consideration of these properties, but the time is right to tackle them now. Figure

1(a) illustrates the need for soft real-time quality of service (QoS) properties, such as

priorities and differentiated flows of information through the GIG.

• The GIG by its very nature must scale to some very ambitious configurations [14][15][12].

For example, even early deployments will have hundreds of users producing and consuming

data, and longer term goals will require scaling to thousands or even hundreds of thousands

of users, as shown in Figure 1(b). When the GIG technology base is initially delivered and

as later improvements are made, it will be necessary to evaluate the scalability properties of

the technology platforms against the requirements seen in DoD scenarios to identify gaps.

Where these are found (and we anticipate many of them), Air Force must ask how to

integrate state-of-the-art insights and capabilities into scalable, reliable and self-managed

systems, both in the context of GIG solutions from NSA and DISA, and in the context of

major Air Force technologies such as the JBI architecture and its Gemini reference

implementations.

 4

Figure 2: Heterogeneity and Compartmentalization in the GIG

• All aspects of the GIG architecture must be viewed in light of the DoD’s unique security

requirements and operational environments, whose heterogeneity and multiple levels of

security and compartmentalization far exceed anything seen in commercial platforms and

systems, as shown in Figure 2. We need to learn how to “ruggedize” DoD net-centric

systems-of-systems, in general, and the GIG, in particular, to provide QoS and other

performance guarantees even in light of denial of service attacks or platform penetration by

insiders. This is an unfortunate conclusion because it is generally recognized that security

must be designed in from the outset if one is to hope for a genuinely secure solution. In the

case of the GIG, it seems clear that the off-the-shelf components and legacy content of the

platform will preclude a first-principles approach to security.

In the Prometheus study, these questions were posed in the light of broader industry trends

[12][13][14][15] to consolidate distributed object computing architectures (such as J2EE and

CORBA), Pub/Sub platforms (such as JMS and DDS), and Web Services environments (such as

.NET and SOAP) within QoS-enabled Service-Oriented Architecture (SOA) platforms and

standards. We therefore focused on what QoS (i.e., performance guarantees, scalability, and

 5

security) should mean for the GIG, as well as how to implement these properties in a GIG built

using QoS-enabled SOA platforms. We believe this to be a particularly timely issue: the SOA

community hopes to tackle such questions but has its hands full with concerns of a more

commercially immediate nature, and the major vendors seem not to even have such questions on

their radar screens. Demonstrated success stories in the GIG context could let the military exert

leadership within the relevant standards organizations, such as the World-Wide Web Consortium

(W3C) and the OMG. Moreover, since military requirements often go well beyond commercial

requirements, there may be an opportunity to push the SOA standards community further than it

might go under the pressure of commercial market incentives.

To illustrate our general approach, consider the following example. SOA platforms offer

reliability mechanisms, and reliability is clearly a requirement for many anticipated GIG

applications. But this superficial match does not really answer the key question: are SOA

reliability mechanisms adequate to satisfy the full range of GIG QoS needs? If one looks closely

at the emerging WS_RELIABILITY standard [12], for example, one can contrast the intuitive

expectation given the name of the standard and the reality of what the standard provides. Based

on its name, one would assume that WS_RELIABILITY is a general purpose reliability

specification for web services, addressing such aspects as service availability and recovery from

faults, status of client requests interrupted by a crash, and so forth. But the actual standard is

quite a different matter. First, we find that it is limited to a rather narrow style of application

(i.e., one in which a client is trying to send a request to a server for “out of band” processing),

and focused on a specific scenario (i.e., one in which a queuing mechanism has been interposed

between the client and the server) [13][14][15]. Admittedly, this is an important case, but it is

hardly a very general one. At any rate, in this specific situation, WS_RELIABILITY defines the

guarantees available to a client, namely that the request will be processed at least once, at most

once, or exactly once, and details the associated mechanisms, which are increasingly visible to

the application designer and costly as we seek stronger guarantees. The standard says nothing at

all about any other form of reliability – it simply permits the client to specify desired behavior

from a queuing intermediary in a pipelined processing setting. Moreover, it says nothing about

how an application should implement the requested properties. Thus a client could request

 6

“exactly once” semantics with no way of knowing how this kind of reliability will be provided,

what the cost implications might be, or indeed, whether or not the property is even achievable.

Given this example, we can now undertake the style of analysis outlined above. For some

purposes, WS_RELIABILITY should be a good match. For example, a time-critical QoS system

might have deadlines measured in the hours, and for such uses WS_RELIABILITY may be

adequate. The Prometheus study explored some of these good-news stories, and we undertook

some preliminary experimental work to understand the associated costs and performance

implications. We also discovered, however, that WS_RELIABILITY was inadequate for other

purposes, e.g., where QoS translates to tight real-time bounds, softer time-critical event delivery

constraints, continuous or high availability, etc. In these cases, we considered how the stronger

requirement could be addressed. Indeed, we can identify a great variety of plausible reliability

needs and we find that the web services specifications address almost none of them.

Security is another fundamental need in DoD GIG applications, but the topic is extremely broad

and a serious treatment of SOA security was beyond the scope of our effort. Accordingly, we

focused on exploring security issues specific to the QoS mechanisms on which we focus.

Moreover, we viewed the term “security” in a broad sense, i.e., a secure system for us will be

one that maintains its QoS properties while (1) limiting unauthorized data access (e.g., through

cryptographic means) and (2) tolerating intrusions into portions of the system (e.g., so-called

“Byzantine” failures). In this broad sense, the ability of a SoS to diagnose problems is a security

property, as are its repair and management characteristics. In effect, we were interested in SoS

that are secure enough to only do what they are expected to do, and that can also be counted

upon to automatically handle minor forms of damage.

2. Summary of Results

It would be far too easy for a study such as ours to content itself with a laundry list of criticisms.

More challenging is to prioritize and identify low-hanging fruit: opportunities for targeted

investment that might have a big impact on the capabilities of existing platforms at modest cost

to the Air Force. Accordingly, the task objectives of the Prometheus study were to explore and

 7

classify near-term (lower risk) opportunities for addressing the primary challenges in the context

of the following four GIG focus areas:

• QoS-enabled Publish/Subscribe Technologies for Tactical Information Management

• Scalable Fault- and Intrusion-Tolerance for Critical GIG Services

• Scalable Enterprise Service-Oriented Architectures

• A Framework for Demonstrating Access Control Policy Compliance

As described below, our results included prototypes, experiments, and analyses;, as well as a

recommend roadmap for next steps by the AFRL development and research team and their

academic and industrial partners.

2.1. Focus Area 1: QoS-enabled Pub/Sub Technologies for Tactical Information

Management

Tactical information management systems communicate by publishing the information they have

and subscribing to the information they need in the face of interactive and/or autonomous

adaptation to fluid environments. To realize the promise of tactical information management for

the GIG in large-scale DoD C2 and C4ISR SoS deployments, the GIG will need the capability to

offer certain types of assurance, e.g., the right information will reach the right consumers where

and when required and that critical QoS properties will be assured to an appropriate degree even

under attack or other resource constraints. Initial work on the enterprise portions of the GIG

deferred consideration of these properties, but recent advances in QoS-enabled platform

technology and tools warrants revisiting solutions to these challenges.

QoS can mean many things. Since the Prometheus effort focuses on tactical information

management in the GIG, we emphasize publish/subscribe event notifications whose latency can

be assured, even in the presence of some degree of disruption, online reconfiguration, network

congestion, failures, or even limited attacks. Since the GIG is inherently a SoS architecture this

implies that cross-system overheads and protocols could have an impact on QoS, hence we

focused on identifying and evaluating such issues.

 8

Coordination
Of Multiple UAVs

Dynamic Mission
Replanning

Feedback &
Control

Image Processing
& Tracking

Coordination
Of Multiple UAVs

Dynamic Mission
Replanning

Feedback &
Control

Image Processing
& Tracking

Figure 3: PCES Capstone Demo Scenario

Portions of our work on the Prometheus project were motivated by prior work in the DARPA

Program Composition of Embedded Systems (PCES) program, which the principal investigator

for this Prometheus effort, Dr. Doug Schmidt, ran during his stint as a Program Manager at

DARPA’s Information eXploitation Office (IXO) from 2000 to 2003. Figure 3 illustrates the

interactions between assets used in the PCES Capstone demonstration at White Sands Missile

Range (WSMR) on April 14, 2005. This demonstration prototyped multiple types of time-critical

targeting services using standards-based enabling technologies and evaluated their ability to meet

the QoS needs of network-centric systems distributed over a wide area, and networked together

over 100 miles. The following live equipment was used in the demo:

• Two ScanEagle Unmanned Air Vehicles (UAVs)

• A High Mobility Artillery Rocket System (HIMARS) wheeled variant of the Multi-Launch

Rocket System (MLRS) and

• An F-16 strike fighter.

 9

The UAVs in the PCES Capstone demo communicated over Link-16, which is a tactical military

network with insufficient bandwidth to provide streaming video for all assets. The demonstration

scenario started with multiple UAVs in the air doing reconnaissance, followed by the appearance

of multiple pop-up targets that were prosecuted by the PCES Operations Center Commander

(OCC) who has the ability to task UAVs and designate targets for tracking and engagement.

When a stationary target was identified as harboring a meeting of hostile combatants and

authorized for prosecution, the OCC tasked the HIMARS MLRS to destroy the target. Battle

damage assessment conducted in real-time using images from the UAVs indicated that some

hostile combatants escaped in a truck. Using information obtained from a UAV assigned to track

the fleeing truck, the OCC then retargeted an F-16 strike fighter, which deployed a Joint Directed

Attack Munition (JDAM) to destroy the mobile target.

The PCES Capstone demo evaluated the use of standards-based COTS middleware technologies.

For example, real-time information to the cockpit of the strike fighter used Real-time CORBA

and the Real-time CORBA Event Service to communicate over a Link-16 tactical network.

Likewise, the C2 & C4ISR information management used to exchange track information within

the operations center was based on the Joint Battlespace Infosphere (JBI), which uses Java 2

Enterprise Edition (J2EE) and the Java Messaging Service (JMS). Figure 4 illustrates the layered

architectures used to provide real-time information to the cockpit and track processing in the

PCES Capstone demonstration.

 10

Real-time Event
Service

Tactical
Network & RTOS

Object Request
Broker

Real-time Info to
Cockpit

Java Messaging
Service

Enterprise
Network & OS

J2EE
Middleware

Track
Processing

Real-time Event
Service

Tactical
Network & RTOS

Object Request
Broker

Real-time Info to
Cockpit

Real-time Event
Service

Tactical
Network & RTOS

Object Request
Broker

Real-time Info to
Cockpit

Java Messaging
Service

Enterprise
Network & OS

J2EE
Middleware

Track
Processing

Figure 4: Technology Layers in the PCES Capstone Demo

Although the technologies shown in Figure 4 represent advanced middleware technologies in the

context of tactical information management in the DoD, our experiences on the PCES Capstone

demonstration revealed the following limitations:

• Real-time CORBA and the Real-time CORBA Event Service are platform-centric

technologies that are well-suited for point-to-point and static pub/sub command processing

over wireline networks [34][49][28]. They were poorly suited, however, for dynamic pub/sub

info dissemination to multiple nodes in mobile networks due to too many layers, excessive

time/space overhead, inflexible QoS policies and pub/sub model, and inadequate support for

surviving cyber attacks.

• The J2EE and JMS technologies are well-suited for operational enterprise environments,

such as large data centers connect via wireline networks. They were poorly suited, however,

for tactical environments due to the lack of QoS policies, lack of real-time operating system

integration, extremely high time/space overhead, and inadequate support to survive cyber

attacks.

Our PCES experience therefore indicated the need for information management technologies that

can function properly in tactical SoS where communication bandwidth is limited/variable,

 11

connectivity is intermittent, connections are noisy, processing and storage capacity is limited,

power and weight limits affect usage patterns, unanticipated workflows are common, and

dynamic network topology and membership changes are frequent. Since connectivity cannot be

guaranteed at all times in such environments, a realistic goal is to provide “better than best

effort” QoS support, subject to network and platform resource constraints. Ultimately, such

technology solutions should also align with – and influence – COTS standards and integrate with

heterogeneous legacy systems.

As part of the Prometheus project, we evaluated the Object Management Group (OMG)’s Data

Distribution Service (DDS), which is a standards-based and COTS Pub/Sub infrastructure

available from multiple suppliers. Figure 5 illustrates the architecture of DDS and shows how it

is designed to support

• Location independence, via anonymous pub/sub protocols that enable communication

between publishers and subscribers,

• Scalability, via supporting any number of topics, data readers, and data writers, and

• Platform portability and protocol interoperability, via standard APIs and transport formats.

 12

Topic Topic Topic

Data
Reader

Data
Writer

Data
Writer

Data
Reader

Data
Reader

Data
Writer

Subscriber PublisherPublisher Subscriber

Data Domain

Domain
Participant

Figure 5: OMG DDS Architecture

The OMG DDS specification has been adopted in the past several years based on decades of

experience with proprietary Pub/Sub communication platforms, such as NDDS from Real-Time

Innovations and SPLICE from Thales. As a result, the technologies underlying the DDS

specification have had a long time to mature in the context of production distributed, real-time,

and embedded systems. In particular, DDS implementations are used in a wide range of DoD

systems including DD(X) Ship Self Defense System (SSDS), Littoral Combat Ship (LCS), Spy

OA, Sea Slice, LPD 17, the Joint Strike Fighter (JSF), and the Future Combat Systems (FCS)

program.

There are several DDS capabilities that make it better suited as the basis of tactical information

management than the standard COTS middleware showcased in the PCES Capstone demo.

Figure 6 shows that DDS has fewer layers in its architecture than the CORBA and J2EE

technologies shown in Figure 4. In particular, the DDS Pub/Sub service is implemented in the

core of the middleware, rather than being implemented as a layered service, as is the case with

CORBA and the CORBA Event Service. This reduction in layers significantly reduces the

 13

latency/jitter and increases the scalability of DDS, as shown by the empirical results shown in

Figures 12, 13 and 14 later in this report.

Data
Reader

R

Data
Writer

R

Publisher Subscriber

Topic

R

Tactical
Network & RTOS

DDS Pub/Sub
Infrastructure

RT Info to Cockpit &
Track Processing

Figure 6: Fewer Layers in the DDS Architecture

Figure 7 shows that DDS supports many QoS policies that can be tailored to meet the data

distribution requirements of tactical information systems. These QoS policies can be configured

at multiple layers (e.g., middleware, OS, and network) and DDS entities (e.g., topics, data

readers, and data writers). Some relevant QoS policies include:

• DEADLINE, which establishes a contract regarding the rate at which periodic data is refreshed

• LATENCY_BUDGET, which establishes guidelines for acceptable end-to-end delays

• TIME_BASED_FILTER, which mediates exchanges between slow consumers and fast producers

• RESOURCE_LIMITS, which controls memory and CPU resources utilized by DDS entities

• RELIABILITY, which enables a trade-off between best effort and reliable data transport

• HISTORY, which controls which (of multiple) data values are delivered

 14

• DURABILITY, which determines if data outlives time when they are written. DDS can

automatically check the compatibility of QoS policy requests and offers.

Data
Reader

R

Data
Writer

R

Publisher Subscriber

S1

S2

S3

S4

S5

S6

S7

S6 S5 S4 S3 S2 S1

Topic

R

S7 S7X

HISTORY

RELIABILITY
COHERENCY

RESOURCE LIMITS

LATENCY

Figure 7: DDS QoS Policies

Figure 8 shows how DDS’s sophisticated filtering capabilities can move processing close to the

data, which reduces network bandwidth in resource constrained tactical links. Techniques for

negotiation and placement of filtering functionality at optimum positions within infrastructure

and data flows to deliver information only (1) when it is needed, (2) if it is needed, or (3) at

requested frequencies.

 15

Data
Reader

R

Data
Writer

R

Publisher Subscriber

S1

S2

S3

S4

S5

S6

S7

Topic

R

SOURCE

FILTER

DESTINATION

FILTER

TIME-BASED

FILTER

Figure 8: Moving Processing Close to the Data

Figure 9 shows how DDS enables clients to subscribe to meta-events that they can use to detect

dynamic changes in network topology, membership, and QoS levels.

Data
Reader

R

Data
Writer

R

Publisher Subscriber

Topic

R
NEW TOPIC

NEW

SUBSCRIBER

NEW

PUBLISHER

Figure 9: Subscribe to Meta-Events

 16

During the Prometheus project we conducted many experiments to evaluate the pros and cons of

DDS relative to other communication models using the ISISlab testbed shown in Figure 10.

Figure 10: ISISlab Testbed

The ISISlab testbed contains 56 dual-CPU Intel(R) Xeon(TM) CPUs running at 2.80GHz with

1GB ram. These machines ran Linux version 2.6.14-1.1637_FC4smp and used g++ (GCC) 3.2.3

20030502. We used this testbed to conduct experiments using three COTS implementations of

DDS (NDDS, SPLICE and TAO DDS) and compared their performance relative to other popular

platforms, such as the Java Messaging Service (JMS), CORBA Notification Service, and

gSOAP. The goal of these experiments was to evaluate the importance of tactical information

management solutions in light of prevailing technology trends and emerging standards and

COTS platforms and tools. Our goal was to ensure that the military can leverage the trends, and

also to ensure that if the SOA and Pub/Sub technologies are overlooking questions of importance

to the military, adequate energy can be directed towards those questions early so that solutions

will be in hand if and when needed. Since military requirements often go well beyond

commercial requirements, it will be necessary to push the COTS standards communities further

than they might go under the pressure of conventional commercial market incentives.

 17

pub
1

sub
1

Domain 1Node1

pubmessage

ackmessage
pub

1
sub

1

Domain 1Node1

pubmessage

ackmessage

Figure 11: Pub/Sub Application Design

The first round of experiments we ran were organized as shown in Figure 11. Two processes in a

single DDS domain perform interprocess communication (IPC), in which a client initiates a

request to transmit a number of bytes (e.g., approximating a message containing XML-encoded

data) to the server along with a seq_num (pubmessage), and the server simply replies with the

same seq_num (ackmessage). The invocation is essentially a two-way call, i.e., the client/server

waits for the request to be completed. The client and server processes are collocated on the same

node since our goal in these experiments was to evaluate the overhead incurred by the various

communication mechanisms. DDS and JMS provides topic-based pub/sub model, the TAO

Notification Service uses push model, and SOAP uses P2P schema-based model.

Figure 12 presents results that compare round-trip latency for all the communication

mechanisms. The differences are compressed by log scale, e.g., latency for the TAO Notification

Service is about 4 times that for DDS2 at small message sizes, and likewise JMS is 3 times that

of the Notification Service. To eliminate ‘cold start’ effects we ran 10,000 iterations at each

message size, with 100 iterations ‘warmup’ before measuring the results. The figure shows that

DDS has significantly lower latency than other Pub/Sub services. Although there is variation in

the latency of the DDS implementations, they are all at least twice as fast (and in some cases

dozens of times faster) than other Pub/Sub platforms as the amount of data increases. As a result,

the delay before the application learns critical information is very high with conventional

Pub/Sub mechanisms, whereas with DDS latency is low across the board.

 18

DDS/GSOAP/JMS/Notification Service Comparison - Latency

10

100

1000

10000

100000

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Message Size (bytes)

A
vg

. L
at

en
cy

 (u
se

cs
)

DDS1 DDS2
DDS3 GSOAP
JMS Notification Service

Figure 12: Comparing Latency for Simple Data Types on Middleware Platforms

Figure 13 presents results that compare round-trip jitter (i.e., variation in the latency) for all the

communication mechanisms. Although there is variation in the jitter of the DDS

implementations, they are considerably more predictable than other Pub/Sub platforms as the

amount of data increases. As a result of the high jitter in conventional Pub/Sub mechanisms they

are not well suited for tactical information management systems.

 19

DDS/GSOAP/JMS/Notification Service Comparison - Jitter

1

10

100

1000

10000

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Message Size (bytes)

St
an

da
rd

 D
ev

ia
tio

n
(u

se
cs

)

DDS1 DDS2
DDS3 GSOAP
JMS Notification service

Figure 13: Comparing Jitter for Simple Data Types on Middleware Platforms

We also ran experiments using more complex data types, such as the following:

// Complex Sequence Type
struct Inner {
 string info;
 long index;
};
typedef sequence<Inner> InnerSeq;
struct Outer {
 long length;
 InnerSeq nested_member;
};
typedef sequence<Outer> ComplexSeq;

This data type is significantly more complicated than the simple sequence of bytes we used in the

previous tests. As a result, it exercises the data marshaling and de-marshaling capabilities of the

 20

various middleware platforms more thoroughly. Figure 14 shows the latency results of this data

type for DDS and GSOAP middleware. These results illustrate that even for complex data types

DDS is more efficient than SOAP.

Figure 14: Comparing Latency of Complex Data Types on Middleware Platforms

 Although these experiments just example a few of the many important QoS issues in the GIG,

their results underscore the importance of evaluating tactical information management solutions

in light of prevailing technology trends and emerging standards and COTS platforms and tools.

The goal of Prometheus was to help ensure that the military can leverage the trends, and also to

ensure that if the SOA and Pub/Sub technologies are overlooking questions of importance to the

military, adequate energy can be directed towards those questions early so that solutions will be

in hand if and when needed. Since military requirements often go well beyond commercial

requirements, it will clearly be necessary to push the COTS standards communities further in the

future than they might go under the pressure of conventional commercial market incentives.

 21

Addressing the challenges described above is the underlying theme of the recommended R&D

activities presented Section B.3.

For example, existing implementations of the DDS standard differ widely in their handling of

one-to-many communication patterns (e.g. situations where many receivers are monitoring a

shared data feed). In such situations, the real-time delivery properties of a platform can easily be

lost, for example if a single source must send data to a dozen separate receivers. This is an

example of a challenge that arises not so much at the level of the standard per-se, but rather in

the implementation of the standard. Needed, in this case, are scalable multicast technologies

with extremely low delivery latency (delay); such technology could then be layered beneath a

DDS front-end to offer the benefits seen in the experiments just reported, but without this kind of

scalability concern. Among the challenges posed in B.3 is the one just summarized; we see it as

a good example of a near-term opportunity that on the one hand demands some basic scientific

research, but on the other should be readily solved with modest investment of resource, could

easily be demonstrated, and hence that could easily transition into the vendor platforms most

popular within the services once solved.

2.2. Focus Area 2: Scalable Fault- and Intrusion-Tolerance for Critical GIG Services

The second focus area of the Prometheus project is “intrusion tolerance,” which is essentially

fault-tolerance for an extreme form of fault in which a faulty component can behave arbitrarily,

and even in coordination with other faulty components in an effort to violate the goals of the

system. This type of behavior can model an application that has been compromised (e.g., via a

software vulnerability or even physical capture), but is also a good way to model the possibility

of data corruption or bugs, which can result in unpredictable behavior: If a system is provably

capable of tolerating even deliberate attack, it should also be resilient to these kinds of mundane

problems (which, nonetheless, fall outside of what many “fault-tolerant” systems are able to

handle!) The clear reality is that mission-critical GIG services must survive both these forms of

failures and also the possibility of outright attack, most likely just when reliability is most

important.

 22

Figure 15 illustrates how the GIG is vulnerable to failures due to faults and intrusions, where

components are likely to come under forms of attack such as physical capture that are atypical in

commercial systems. What is desired, of course, is an architecture in which correct behavior can

be assured even if some percentage of applications or service representatives have been

compromised or are experiencing arbitrary failures.

Application

Application
Application

Application

Application

Pub/Sub
Service

Application

Application

Application

Figure 15: Protecting GIG Services from Failures due to Faults and Intrusions

Note that our wording emphasizes the need to operate through an intrusion. Traditional DoD

SoS operate with barrier security: they erect a firewall to keep intruders out, but take no

additional steps; if an intruder circumvents the firewall, his actions might be arbitrarily

malicious. In our view, it is far more prudent to defend in depth: employ firewalls, but also

 23

anticipate the event that components of a system are compromised by an attacker despite the

firewall. In the “intrusion tolerance” mindset, we model this eventuality and build the system so

as to withstand it. An intrusion-tolerant service is thus one that continues to operate correctly

despite the corruption of some of its components [15][16][1][2][3][5][12][14][21][22].

Though an appealing goal, one trouble with intrusion-tolerant architectures in the past is that

they were very costly to operate, and in fact performance would degrade dramatically as systems

scaled up in distributed environments. Figure 16 gives some insight into the cause of this

degradation, showing the distinction between the abstraction of a service and its distributed

implementation.

(A) Top-level Service Abstraction (B) Implemented via Distributed Services

insert() remove() query()

inv
oc

ati
on

res
po

ns
e

insert() remove() query()

inv
oc

ati
on

res
po

ns
e

Figure 16: Distributed Services based on the SOA Model

As pictured on the left of Figure 16, the client need not even be aware that the service is

implemented in a distributed way. “Under the covers” (pictured on the right), however, the

distributed implementation is explicit, and in fact the coordination protocols that are involved in

the implementation of an intrusion-tolerant service are typically complex and costly. The

performance degradation of these protocols as the system scaled up helped justify eschewing

intrusion-tolerance technologies, leaving the core system undefended under the argument that the

 24

defense would have an intolerable cost. Our research in intrusion-tolerance during Prometheus

therefore focused primarily on building systems whose services were more fault-scalable than

prior approaches but without these sorts of unacceptable costs and overheads.

Historically, the most thoroughly studied approach to building intrusion-tolerant systems is state

machine replication, shown in Figure 17. In this approach, client invocations are submitted to

the servers using an atomic multicast protocol that ensures the delivery of all invocations to all

(correct) servers in the same order. Provided that the servers are initialized to the same state, if

they process invocations in the order received (and are deterministic), the correct servers will

execute identically. In this way, each will provide the same response to the client, and the client

can use these identical responses to “out-vote” the faulty servers, i.e., by accepting the response

that occurs in the majority.

Ordered by an
atomic multicast
protocol

Ordered by an
atomic multicast
protocol

Figure 17: State Machine Replication

While effective for small service implementations, state machine replication does not scale well.

In particular, since every request must be reliably delivered to and processed by every server,

 25

adding servers to the service implementation does not improve its throughput. In fact, due to the

additional messages involved in ordering each request among more servers, adding servers can

significantly decay the performance of this approach.

To address these limitations, during Prometheus we studied alternative designs to state machine

replication for building intrusion-tolerant applications. One such design is the “Query/Update”

(Q/U) protocol, which offers a different set of tradeoffs than state machine replication. In the

Q/U protocol, accesses are made to quorums of servers that can be much smaller than the full set

of servers; this enables load to be dispersed across different quorums. In addition, the protocol is

optimistic, incurring multiple rounds of communication only in uncommon cases. This optimism

is enabled through versioning: updates to a server are not destructive, but rather create new

versions at the server. A subsequent operation can then access multiple versions to determine

which one is, in fact, the latest complete update. Finally, the protocol uses very lightweight

cryptographic primitives to enhance performance.

Figure 18: The Query/Update (Q/U) Protocol

Figure 18 illustrates a fault-scalable approach based on the Q/U protocol. The Q/U design is best

understood by considering a related protocol from which it is built, called “Read/Conditional-

Write.” As its name suggests, the protocol enables a client to perform a read operation on the

service, or to perform a conditional write. In a conditional write, the client attempts to write a

new value to the object, conditioned on the current value of the object not having changed since

this client last read the object. So, for example, if both clients in this slide read the object (at a

quorum) simultaneously (first frame of Figure 18) and then concurrently perform conditional

writes conditioned on the orange value being current, at most one of them⎯in this example, the

 26

left client’s (the green value, see second frame)⎯succeeds. The right client’s write attempt (the

red value, third frame) fails, since it was conditioned on the orange value but the green value is

current.

Figure 19: Performance Comparison of Q/U and BFT Under Load

Figure 19 presents a graph that gives an example of the performance of Q/U, in comparison to

that of the “BFT” implementation of state machine replication by Castro and Liskov [21][22].

BFT is widely considered to be the most efficient publicly available implementation of state

machine replication. This graph shows that as the load on the system grows, Q/U retains low

latency and high throughput, while BFT decays in these circumstances. These tests were

conducted on a cluster of 2.8 GHz Pentium 4s with 1GB RAM running over a 1 Gb switched

Ethernet with no background traffic.

2.3.Focus Area 3: Scalable Enterprise Service-Oriented Architectures

In addition to evaluating the real-time QoS support of conventional SOA platforms, we also

evaluated the scalability of these platforms in focus area 3. As described below, our

investigation made it clear that today’s SOA platforms are weak in aspects concerned with

scalable management of security or appropriate-use policy. For example, consider a typical Air

Force application that operates in a war zone and communicates with secured servers back in

Washington, as shown in Figure 20. There may be up to 40 “hops” over a set of interconnected

networks each with its own firewalls, resource allocation policies, routing policies, etc. The

 27

regional commander might wish to make a policy statement prioritizing warfighting systems

over less critical applications, but how would we implement such a policy?

Tactical
Network

Satellite
Network

Terrestrial IP
Network

Terrestrial
Circuit Network

Red LAN
Access FunctionsAccess Functions

Red LAN
Access FunctionsAccess Functions

Protection of
Data-in-Transit
Protection of

Data-in-Transit

IA Policy-based
Routing

IA Policy-based
Routing

COI level Connectivity,
Bandwidth, Priority

Enforcement

COI level Connectivity,
Bandwidth, Priority

Enforcement

SERVICE

Service
Allocation &
Prioritization

Service
Allocation &
Prioritization

GIG

Tactical
Network
Tactical
Network

Satellite
Network
Satellite
Network

Terrestrial IP
Network

Terrestrial IP
Network

Terrestrial
Circuit Network

Terrestrial
Circuit Network

Red LAN
Access FunctionsAccess Functions

Red LAN
Access FunctionsAccess Functions

Red LAN
Access FunctionsAccess Functions

Red LAN
Access FunctionsAccess Functions

Protection of
Data-in-Transit
Protection of

Data-in-Transit

IA Policy-based
Routing

IA Policy-based
Routing

COI level Connectivity,
Bandwidth, Priority

Enforcement

COI level Connectivity,
Bandwidth, Priority

Enforcement

SERVICE

Service
Allocation &
Prioritization

Service
Allocation &
Prioritization

GIG

Figure 20: The Scope of a Typical SOA-based GIG Application

Even managing the policy and configuration data for a large set of firewalls spread over a world-

wide deployment is a potentially hard problem. Incrementally updating a policy once a firewall

has been widely deployed represents a very important, practical, and yet largely ignored

problem. Relatively little is known about disseminating the associated databases of policy rules,

ensuring consistency when rules are updated during times when parts of the network may be

reconfiguring or disabled, detecting errors and inconsistencies, etc. Moreover, as a war is fought,

needs and loads constantly change, and equipment damage will occur. Operating such a

complex system robustly in the face of these kinds of threats is a tough challenge. Our

Prometheus study identified a great number of such questions: questions that would arise

immediately in any practical deployment and yet that are largely ignored by existing platforms.

Our study did not find definitive answers to these problems, but we did identify a number of key

R&D topics that have direct, measurable impact on the ability of the Air Force to operate critical

networks, including scalable QoS-enabled clusters, server/Service discovery, and enterprise

publish/subscribe architectures. We discuss each of these topics below.

 28

2.3.1. Scalable QoS-enabled Clusters

As shown in Figure 21(A), COTS GIG/NCES technologies facilitate building single server

platforms. In many development tools, suffices to click a button and designate interfaces to

import/export. Unfortunately, today’s solutions do not scale to support large numbers of clients,

do not manage themselves, and cannot assure any form of time-critical responsiveness. Figure

21(B) shows what is needed, namely policy mechanisms, for matching information consumers to

the appropriate services running on particular servers in large configurations with many data

sources.

ServerServer
Pub-sub combined with point-to-point
communication technologies like TCP

LB

service

LB

service

LB

service

LB

service

LB

service

LB

service

“front-end applications”

(A) Today’s tools help us build single-
server solutions (B) Needed: easily developed scalable

clustered solutions

Figure 21: Reality vs. Needs for Scaleable QoS-enabled Cluster

Commodity clusters are the cheapest way to put computing cycles at the disposal of popular

applications [12][14][15]. For example, suppose that a map server maintains map information for

a remote area of North Korea. Normally, there would be little need to handle high volumes of

queries and that server would run on small numbers of nodes. But in the event of a

confrontation, the load could suddenly spike and become huge. We would not want to port the

application to a supercomputer “on demand” so it makes more sense to design it to scale out and

ensure that if demand surges, it can simply run on more nodes while continuing to satisfy QoS

properties like time-critical responsiveness.

 29

This is perhaps an obvious observation: when load increases, we would like a way to

automatically allocate resources to handle the surge. Yet we found that industry has been largely

inattentive to the issue, with one notable exception: databases and transactional systems often

include load-surge handling software that scales well. Thus the problem is recognized by

industry, but in a narrow way, and this narrow recognition omits important classes of problems

for which system-level solutions are required. By this we mean that there is an identifiable need

for platform technologies directed towards typical developers with normal skill sets, designed to

assist them in arriving at scalable solutions that will work well under a wide range of loads,

stresses, and styles of use.

As part of the Prometheus effort, we evaluated platform technologies and systems that have these

properties. For example, Astrolabe [59][60] is a scalable monitoring infrastructure developed by

Cornell researchers several years ago using a novel fusion of peer-to-peer gossip protocols

[7][24][17][32][33][39][40][48][53][54][55][59][58]0 and higher speed, more standard,

multicast protocols[16][64][62]. It permits the user to diagnose complex problems, data mine or

even dynamically reconfigure even a massive system. Amazon is now using this solution in their

largest web centers. Bimodal Multicast [17] is a technology for disseminating notifications and

other urgent events to very large numbers of receivers that can scale seemingly without limit and

can tolerate even the most severe disruptions. Kelips [33] is a powerful indexing technology that

can index items widely distributed in a LAN and offers client systems low-cost lookups, again in

a manner that will resist even extreme disruption or reconfigurations.

Looking to the future, one project we evaluated is called Tempest, which is a time-critical cluster

computing platform, still under development, that will slash the difficulty of building services

that scale well on clusters. The basic vision is of a drag and drop solution: the developer builds a

non-distributed web service solution using the Tempest methodology, then drags it onto the

cluster, and after a quick dialog about desired properties, Tempest automatically clones the

system and deploys it to the cluster, dynamically healing damage in the event of a crash or other

failure [43], rescaling as the need arises for more or fewer nodes, and maintaining the good

timing properties of the original application as it does these things. The key innovation is to fuse

a new kind of gossip-based epidemic communication protocol [24][23][14][32][33] with a more

 30

standard way of doing replication and distributed consistency tracking. The goal is that the

developer of that time-critical map server might just run it under Tempest and in this way benefit

from sophisticated scaling solutions without ever needing to implement them by hand.

Underlying Tempest is Ricochet [8], a time-critical multicast update protocol that can be

accessed through a DDS interface of the sort discussed earlier in this report.

In general, our findings suggest a new approach to scalable enterprise SOA platforms that

focuses on the following approach:

• New protocols: Scalable systems demand scalable components. For example, in our

research we invented Slingshot [9], a new form of forward-error correction (FEC) protocol

that integrates with multicast to give high reliability, excellent scalability, and outstanding

real-time properties, and Ricochet [8], an extension of Slingshot that can be used in publish-

subscribe and event notification environments. Given these components, we were able to

develop a scalable systems architecture [43] around them.

• Use of standards. We favor the development of platforms designed to fit elegantly into a

Web Services setting. For example, the Tempest system will take unmodified Web Services

servers, pretty much “right off the truck,” and turn them into scalable load-balanced real-time

clusters at the touch of a button. (In fact applications do need to be re-linked against our

libraries, but this isn’t a hard thing to do).

• Rigorous techniques. Our investigation concluded that the use of epidemic gossip often

permits the developer to arrive at scalable solutions backed by rigorous mathematical

formalism [7][24][32] and to reason in a rigorous way about solutions even as they are being

designed and implemented. This results in a powerful mixture of real technology with

“deep” understanding in how that technology will work in a target setting

• Emphasis on real-world needs. We could have recommended the development of more and

more components along the lines of Astrolabe. But the Air Force needs to see how these can

fit into realistic data center and Pub/Sub scenarios. We see Tempest as a pre-production

solution. Cornell, which is developing Tempest, will make it available for the public, but the

 31

main goal is to show potential AF vendors and platform sources precisely how it can be

done! We recommend this as a general strategy for Air Force studies in this overall area.

This ongoing work at Cornell is yielding a variety of empirical results and has resulted in a series

of conference submissions. For example, Ricochet, our time-critical replication protocol [8], is a

tremendously powerful way of doing data transport in real-time applications. There has been

tremendous interest in this work, for example from Raytheon (for use in designing hardware

platforms capable of nearly instantaneous recovery from damage), Yahoo! (for use in financial

trading systems), Ericcson (for use in next generation telecommunications switches), and many

others. Right now, we’re in the process of releasing Ricochet for general use even as we design

the detailed architecture of the framework around it – Tempest – and the experiments we’ll use

to show that for realistic applications we can actually automate the mapping from a server that

some high-school trained individual coded on Visual Studio or a similar tool into a clustered,

real-time, scalable solution.

Not every server will work – Tempest will be limited to applications with weak consistency

requirements right now. Our hope is to build out from that as a starting point. But many servers

work with noisy data and we do offer a meaningful form of consistency – not virtual synchrony,

but not best effort. So we aren’t tossing out the whole question; we’re just starting with low-

hanging fruit.

We think that being able to empower an ordinary application developer to build a scalable cluster

that manages itself and has good real-time properties would be an amazing contribution even if

some kinds of services need a different technology to support them, e.g., we won’t tackle

transactional services.

2.3.2. Scalable Server/Service Discovery

Another example of a challenging research problem on which much work is needed involves

what is commonly called “service discovery,” where clients seek information, e.g., maps,

intelligence, locations of friendly or enemy units [10]. Services exist throughout GIG servers.

Some servers have been scaled onto clusters and replicated at multiple locations, whereas some

are operated by other military branches, or even coalition partners. A key challenge is to

 32

implement policy to control routing of client requests to service on most appropriate server,

where the policy subject to security constraints, load-balancing, locality, specific client needs,

and other specific server properties.

Web services and SOA systems are designed right now under the assumption that, much like for

the web, one can easily find the right server and hence the standards focus on a single pair: a

single client-server “dialog.” As shown in Figure 22(A). But suppose that massive numbers of

clients suddenly start to search for servers in a huge pool of candidate services, as shown in

Figure 22(B). These clients have individual preferences, e.g., one may want “current maps” for a

region of North Korea, while another wants “annual satellite data” showing evidence of military

construction or other activities over a period of time. Clients care about performance: given

several sources for the identical data, they will want to communicate with a lightly loaded

source. Some clients want very high quality data, or specially annotated data that has been

approved for their use by intelligence professionals. We can turn these goals around and obtain a

similar set of server-side, policy objectives, such as security policies, load-balancing policies,

etc.

ServerServer

(A) Today’s tools assume that client knows which
server s/he wants to run a particular service (B) With many clients & many servers, need policy

control over mapping of particular clients to the
appropriate server (UDDI doesn’t solve this problem)

ServerServer
ServerServer
ServerServer
ServerServer
ServerServer
ServerServer

Figure 22: Scalable Service/Server Discovery

How should this problem be solved? Right now, the suggestion in the web services framework is

to build a single, centralized database using UDDI to describe services and then for clients to

query this database [12]. But it is easy to see that many of the questions just articulated can’t be

solved in that manner – and moreover, it makes little sense to take the intrinsically decentralized

system we started with and to somehow impose a single centralized component. Who would run

 33

that component, and set the standards, the Air Force, or the Army, the NSA, etc.? We therefore

need a decentralized approach that can be shown to work well in the many dimensions

articulated and that works with standards as much as possible but also goes beyond them as

needed. Research issues here include domain-specific languages for specifying properties and

policies, approaches to solving the secure query problem that scale well, too, and even “trust” as

it arises in such a setting, i.e., suppose that a client is directed to such and such a service: what

kinds of trust is the client implicitly accepting when using that service? Expressed differently,

how can we make it hard for an adversary to confuse the client and convince it to use a low-

quality data source?

Our Prometheus study found other relevant prior work and we feel that AFRL will need to

engage some of the domain experts who are doing so: Balakrishnan and Shenker’s team at MIT

and Berkeley [10], for example, and Gun Sirer through the IAI that links AFRL and Cornell.

Subsequent to completing the Prometheus study, we helped organize a PRET proposal to

AFOSR (AF-TRUST-GNC) that includes a sub-effort focused on this problem space.

2.3.3. Scalable Publish-Subscribe Architectures

Pub/Sub [45] is another area that needs to be revised in light of the GIG/NCES trends. Web

services use Pub/Sub to announce events, transmit updates, etc [12]. This arises both within data

centers (where the Tempest system is an example of how one might tackle the technology need)

but also in scalable setting with remote clients. Unfortunately, in addition to the real-time QoS

problems described in Section 2.1, existing commercial products do not scale well enough for

their envisioned use in enterprise GIG and NCES systems. Air Force applications are more

demanding in terms of numbers of clients, mobility, data sizes and rates, reliability and QoS

needs, etc than anything one sees in the commercial sector. And while there are solution aimed

at sub-problems (like DDS, a Pub/Sub solution for real-time applications but where the number

of subscribers for any particular topic is typically small), we find nothing with the spectrum of

needs and scalability properties required.

AFRL should invest to develop and demonstrate solutions that can later transition into major

products or at least plug and play into major web services platforms in a clean and easily used

 34

manner. At Cornell, a project called Quicksilver is tackling some of these demanding problems,

again using a mixture of classical protocol mechanisms (such as virtual synchrony, the model

used in our work on Isis and Horus [12][16][18][25][50][51][52][60][61][62][64] and adopted by

the New York and Swiss Stock Exchanges, the French ATC, the Navy for the AEGIS warship,

etc) and scalable mechanisms such as the gossip/epidemic recovery protocols demonstrated in

Bimodal Multicast [17]. Quicksilver is a scalable Pub/Sub architecture with greatly improved

security, reliability guarantees, stability even under distributed denial of service (DDoS) attacks

and major performance overloads, designed for stable behavior in massive deployments.

The key idea of Quicksilver is to map Pub/Sub to group communication but to do so using a

radically new scalable architecture that scales both in numbers of groups and in numbers of users

0. Previous approaches were limited to tiny numbers of groups. In Quicksilver each group has

its own protocol stack 0. We expect to support best effort protocols similar to DDS but also

much stronger reliability/security mixes, such as secured virtual synchrony. We’re using the Web

Services eventing model and are focused on Windows as our primary development platform.

QuickSilver is just reaching an experimental evaluation stage but should become useable

sometime in 2006. The eGrid community is eager to include this into their “tool set.” This work

is at a preliminary stage but is promising and could eventually offer solutions of the type the Air

Force will need.

2.4. Focus Area 4: A Framework for Demonstrating Access Control Policy Compliance

The fourth focus area of our work during the Prometheus effort involved the development of a

unified framework for demonstrating policy compliance. The particular type of policy that we

studied in this effort was access control policy, which defines the circumstances under which

requests to access a resource should be granted or denied. Clearly access control will be a

requirement of a security-sensitive system like the GIG, and the complexity of the GIG demands

that an access control framework be put in place that can express a wide range of policies.

 35

Demonstrate that the King
authorized access to the gold

The KingThe King

Direct Authorization:

I want gold.
- The King

ScottScott

Sir Mike

Figure 23: Direct Authorization

Access control policy is also an instructive example because policies can be quite complex, and

demonstrating compliance can require collecting facts from many distributed locations. To

demonstrate policy compliance with high assurance, the framework with which we experimented

requires a proof in a formal logic that a policy is satisfied. Less formal approaches have also

been considered in the literature. Figures 23–25 give a somewhat whimsical (but relevant)

analogy of this process in which the knight represents the resource monitor, guarding a pot of

gold (the resource). The knight enforces the policy that any access to the gold must be approved

by the king. Authorization is conveyed from one party to another in the form of scrolls, i.e.,

credentials, that contain a statement and a signature. Authorization can occur in two forms:

direct and indirect. An example of direct authorization is shown in Figure 23 where the King

himself would like to access the gold. To do this, he signs a credential stating that he would like

to access the gold.

 36

Demonstrate that the King
authorized access to the gold

Scott can access gold
- The King

The KingThe King

Indirect Authorization:

ScottScott

Sir Mike

I want gold.
- Scott

Figure 24: Indirect Authorization

However, the king may want others to conduct financial affairs on his behalf. An example of an

indirect authorization is shown in Figure 24, where the king indicates that another party may

access the gold. In this case, Scott requires two credentials to access the gold – one from the king

stating that Scott is allowed to access the gold, and another from Scott stating that he would like

to access the gold. The scenario in Figure 24 can be extended to include longer chains of

authorization. For example, Figure 25 shows an example where the King has delegated control

over the gold to Sir Mike, who then authorizes Scott to access the gold.

 37

Scott can access
gold.

- Sir Mike

Mike is in
charge of gold

- The King
The KingThe King

Indirect Authorization:

ScottScott

Sir Mike

I want gold.
- Scott

Demonstrate that the King
authorized access to the gold

Figure 25: Delegation Chains

In all three scenarios, the responsibility of the knight (a.k.a, resource monitor) is only to verify

that each credential is valid, and that the collection of credentials imply that access should be

granted. This approach has several advantages:

• The demonstration of authority may take the form of a logical proof. Algorithms exist to

allow the knight to check these proofs efficiently, while the use of logic gives us a greater

assurance of correctness.

• Authority can potentially be demonstrated in many ways. Flexible delegation, roles, and

groups allow the system to more closely resemble the relationships that arise in practice.

Furthermore, the knight need not iterate all possible combinations beforehand, he must

simply check that a particular demonstration is valid.

• The policy is distributed, which allows the system to better model scenarios in which there is

no central authority, such as a partnership between two businesses.

However, the approach described above has several drawbacks as well. Since there are many

ways to derive authority, anyone constructing a proof must potentially consider each of these

 38

ways. Moreover, the credentials are distributed among the signers, and may be created

dynamically in response to a request. For privacy reasons, you may not wish to reveal all of your

credentials to other parties, which makes it difficult to identify and retrieve the set of credentials

that will demonstrate access. During the Prometheus project we therefore undertook an initial

study of this problem, i.e., to develop a more efficient algorithm for identifying and retrieving

this set of credentials.

Figure 26 shows some preliminary results for a new credential-collection and policy-

demonstration algorithm that we developed. The approach we developed yielded a significant

(i.e., four-fold) improvement in the number of requests needed to locate the proper credentials

and create proofs over prior approaches in the literature. One of our optimizations is called

“automatic tactic generation” (ATG), which “generalizes” approaches to collecting the

appropriate credentials from a single proof for one access. Since resources in an environment

typically are governed by common policies, how one resource was accessed can give insight into

how another resource might be accessed. This insight is exploited in ATG to more efficiently

construct proofs of policy compliance once a single proof has been constructed.

 39

0

20

40

60

80

100

120

140

160

180

1 2 3 4

Access Attempt

A
ve

ra
ge

 N
um

be
r o

f R
eq

ue
s

Lazy: No ATG
Lazy: ATG

Figure 26: Performance of New Credential-Collection and Policy-Demonstration

Algorithm

During the Prometheus project we deployed our access control policy framework in a testbed at

CMU for further experimentation. Our results showed performance gains via novel proof

construction optimizations, but there is much left to do. We plan to conduct future research on

this topic in the context of a unified framework for QoS policy management in the Pollux effort,

as described in Section B.2.

2.5. Summary of Results

Section A has described our activities and results in the Prometheus project that focused on (1)

assessing the challenges of applying existing SOA methods, platforms, and tools to develop SoS

architectures for tactical and operational information management in the GIG settings and (2)

developing initial requirements and examples for the key technical innovations that will

constitute the QoS-enabled GIG. As part of these activities, we designed of prototypical proofs-

of-concepts and conducted several feasibility studies aimed at establishing a baseline for

technology in the area of QoS-enabled GIG, developed recommendations concerning the

architecture of a QoS-enabled GIG platform, and identified metrics where progress is needed.

 40

The activities in Section B below involved the evaluation and refinement of prototypes and

experiments described above. The goal was to produce a technology roadmap for future GIG

R&D activities that is based on solid experimental and analytical results.

 41

Study Recommendations for Future R&D Efforts

3. Overview

Our 9-month Prometheus study revealed that some of the most promising technologies for

meeting the challenges in the GIG described in Section A involved (1) enabling users (e.g.,

commanders and administrators) and developers (e.g., software and systems engineers) to

specify various real-time and security QoS policies that convey their intent at a domain-centric

level and (2) flowing these domain-centric policies down to configure and deploy software and

hardware components in networks, operating systems, middleware, and applications that enforce

these policies layer-to-layer and end-to-end across potentially autonomous domains.

To explore these technologies further, the Prometheus study produced recommendations related

to developing, analyzing, empirically evaluating, and optimizing QoS-enabled SOA and Pub/Sub

middleware platforms and tools that will provide the following capabilities:

• A Unified Framework for QoS Policy Management

• QoS-enabled Pub/Sub for Tactical Information Management

• Scalable Fault- and Intrusion-Tolerant Services

• Technology for Scalable Clustered Service Architectures

• Scalable Service/Server Discovery Architectures

The remainder of this section describes future R&D efforts that can provide these capabilities.

We plan to explore many of these topics in follow-on efforts to Prometheus, including the Pollux

and Castor projects.

4. A Unified Framework for QoS Policy Management

The goal of this set of R&D activities is to build upon the Prometheus activities described in

Sections A.2.1 and A.2.4 to define, validate, and optimize a unified framework for QoS policy

management that enables the predictability and resource control required by tactical information

management systems, while preserving the modularity, scalability, and robustness that’s the

hallmark of the Pub/Sub model. In platforms that support tactical information management for

 42

the GIG, QoS policies will enable users and developers to control many aspects of middleware,

operating systems, and network mechanisms. QoS policies will often be implemented as

contracts between publishers and subscribers, where publishers offer and subscribers request

various levels of service. Examples of QoS policies available to users and developers of tactical

information management applications in the GIG include:

• The lifetime of each data instance, i.e., whether it will be (1) destroyed after it is sent, (2)

kept available for the sender’s lifetime, or (3) kept available for a specified duration.

• The degree and scope of coherency for information updates, i.e., whether a group of updates

can be received (1) as a unit and (2) in the order in which they were sent, and to how large a

subset of all updates (1) and (2) may be applied.

• The frequency of information updates, i.e., the rate at which updated values are sent, or the

maximum rate at which they may be received.

• The maximum latency of data delivery, i.e., the maximum acceptable interval between the

time data is sent and the time it is delivered to the receiver.

• The priority of data delivery, i.e., the priority used by the underlying transport when

delivering the data.

• The reliability of data delivery, i.e., whether missed deliveries will be retried, and for how

long the sender may block while waiting for a successful retry.

• How simultaneous modifications to shared data can be arbitrated, i.e., how a selection can be

made among the owners of the shared data to determine which owner’s modification will be

the one that is actually applied.

• Mechanisms and parameters to determine liveliness, i.e., the frequency with which liveliness

is asserted, whether or not assertion is automatic (handled by the infrastructure) or manual,

and, if manual, who is responsible for making the assertion.

• Parameters for filtering by data receivers, i.e., predicates which, when bound to the values of

individual data instances, determine whether instances are accepted or rejected.

 43

• The duration of a data instance’s validity, i.e., the specification of an expiration time for a

data instance, so that the delivery of stale data can be avoided.

• The depth of the ‘history’ included in updates, i.e., how many prior updates will be available

at any time, for example ‘only the most recent update’ or ‘the last n updates’ or ‘all prior

updates’.

• The ability of publishers and subscribers to access data and resources, i.e., particularly so for

access-control policies that adversaries will attempt to circumvent through clever means.

Specifying and enforcing all of these QoS policies in tactical information management systems

today is an enormously tedious and error-prone task. In particular, users and developers need to

configure and tune all these policies at multiple levels, including lower-level networking

mechanisms (such as policies for classifying and prioritizing packets and flows), operating

system mechanisms (such as policies for prioritizing access to CPUs, memory, and I/O devices),

middleware services (such as event notification, scheduling, fault tolerance, security, and load

balancing), and services in the applications themselves (i.e., the actual “business logic” of the

applications). This problem is exacerbated by the fact that not all combinations of options are

semantically compatible.

During the past decade, researchers have increasingly moved toward formal approaches to

specifying, enforcing, and demonstrating conformance to QoS policies. Early work focused on

modeling QoS mechanisms using formal logic (e.g., [42]) and constraint checking systems

[37][63] to justify their correctness before system deployment. More recently, there has been

progress in using formal logic within the system at run-time to construct proofs that policies can

be satisfied before resources are allocated and/or access is granted [19]0. In this approach, a

proof is constructed to demonstrate that the policies can be satisfied. To ensure security, this

proof is built using a formal logic from digitally-signed credentials issued by various parties in

the system. Using formal logic in the QoS enforcement implementation limits the opportunities

for implementation errors at run-time, in contrast to merely modeling an abstraction of the

system in formal logic at design-time.

 44

In tactical information management systems of the scope, complexity, and flexibility of the GIG,

we believe that such formal approaches offer the best chance for minimizing costly (indeed,

deadly) errors in policy enforcement. These formal logic approaches have not, however, been

demonstrated in large-scale systems, much less systems-of-systems, so the current state-of-the-

art leaves open many questions regarding their use in real systems. Within the context of future

effort, therefore, research is needed to understand the degree to which these approaches are

suitable for use in real systems, and also develop new distributed algorithms, tools, and

middleware platforms to make them more suitable. Specific challenges and approach that future

research should address involve developing a unified framework for QoS policy management

that can:

• Significantly ease the task of creating new tactical information management applications for

the GIG and integrating them with existing artifacts in new/larger contexts/constraints. Key

R&D challenges involve converting commander’s intent, along with static/dynamic

environment, into QoS policies. To address these challenges, we recommend the creation of

domain-specific languages and a suite of tools that can be used to precisely specify a wide

variety of QoS policies. These tools should present choices to users in an intuitive way that

guides them to meet warfighter objectives, not confuse them with barrage of obscure options.

These tools should also be make it possible to analyze, validate, and certify QoS policies for

various static and dynamic properties, such as semantic conflicts, time/space

overhead/performance, pinpointing workflow bottlenecks.

• Build technologies that (1) enable the decentralized creation of access control policies for

distributed resources and (2) exercise that authority efficiently when resources need to be

accessed. The goal is to construct a logical framework that can be used in tactical information

management systems to formally validate access-control decisions as compliant with

policies. In addition, this framework should be extensible to adapt to changing needs, so that

new policies can be created on-the-fly. A rigorous and flexible access-control infrastructure

is a step toward mechanisms to enforce other types of policies as well, such as the QoS

policies that will also be explored in this proposed effort. Reconfiguring a system to ensure

QoS properties is itself an activity that should be subject to access control, since doing so

 45

might be at the expense of some other property or party in the system. To prevent the abuse

of this flexibility, it is appropriate to limit the ability to reconfigure the system in such a way

that would impose on others’ activities. For example, a Colonel’s attempts to reconfigure the

system to support her QoS needs should perhaps be permitted only if this does not interfere

with her General’s QoS needs. The unified framework for QoS policy management should

support the specification of rich access control policies such as these.

Figure 27 illustrates the general approach for a unified framework for QoS policy management.

To achieve such a framework will require the development of tools to capture commander’s

intent and/or application-level resource management priorities and map them to the underlying

platform QoS policies when (1) entities contending for QoS resources are operating in disjoint

contexts, i.e., no higher level arbitration may be feasible in time-frames of interest, (2) QoS

requirements change dynamically as mission needs evolve, (3) critical information needed to

establish urgency is transient and only available locally, and (4) local entities are motivated to

inflate their urgency. In conjunction with the QoS-enabled platform technologies described in

Section B.3 below, this unified framework for QoS policy management should support

dynamic/consistent end-to-end system monitoring, adaptation, and optimization at multiple

layers in tactical information management systems.

 46

Data
Reader

R

Data
Writer

R

Publisher Subscriber

S1

S2

S3

S4

S5

S6

S7

S6 S5 S4 S3 S2 S1

Topic

R

S7 S7X

HISTORY

RELIABILITY
COHERENCY

RESOURCE LIMITS

LATENCY

ACCESS
CONTROL

Unified Framework for
QoS Policy Management

Figure 27: Configuring QoS Policies via Unified Framework

5. QoS-enabled Pub/Sub for Tactical Information Management

Some of the most promising technologies for meeting the challenges in the GIG described in

Section A involve (1) enabling users (e.g., commanders and administrators) and developers (e.g.,

software and systems engineers) to specify various real-time and security QoS policies that

convey their intent at a domain-centric level and (2) flowing these domain-centric policies down

to configure and deploy software and hardware components in networks, operating systems,

middleware, and applications that enforce these policies layer-to-layer and end-to-end across

potentially autonomous domains. To explore these technologies further we recommend

developing, analyzing, empirically evaluating, and optimizing QoS-enabled Pub/Sub middleware

platforms and tools that will provide:

1. Universal – yet secure – access to information from a wide variety of sources running over a

wide variety of hardware/software platforms and networks.

2. An orchestrated information environment that aggregates, filters, and prioritizes the delivery

of this information to work effectively in the face of transient and enduring resource

constraints.

 47

3. Continuous adaptation to changes in the operating environment, such as dynamic network

topologies, publisher/subscriber membership changes, and intermittent connectivity.

4. Tailorable, actionable information that can be distributed in a timely manner in the

appropriate form and level of detail to users at all echelons.

The goal of this set of recommended R&D activities is to integrate the unified framework for

QoS policy management described in Section B.2 with QoS-enabled Pub/Sub technologies so

that tactical information management applications will function properly in environments where

communication bandwidth is limited/variable, connectivity is intermittent, connections are noisy,

processing and storage capacity are limited, power and weight limits affect usage patterns,

unanticipated workflows are common, and dynamic network topology and membership changes

are frequent. Although the results in Section A.2.1 show that standards-based COTS middleware

like OMG DDS provides a promising foundation for tactical information management in the

GIG, existing specifications and implementations are not yet sufficient to support the stringent

real-time and security QoS requirements. In particular, key R&D challenges associated in the

QoS-enabled platforms portion of this effort involve: (1) specifying and enforcing integrated

QoS policies at multiple layers (e.g., application, middleware, OS, transport, and network) to

support communities of interest within multiple domains, (2) managing resources in the face of

intermittent communication connectivity, e.g., power, mission, environments, silence/chatter,

and (3) compensating for limited resources in tactical environments, e.g., bandwidth, compute

cycles, primary/secondary storage.

To address these challenges, we recommend that future R&D activities focus on the following

topics pertaining to platforms for tactical information management in the GIG:

• Develop centralized and/or decentralized services for automatically discovering publishers

and subscribers for topics and establish data flows between them as permitted by the settings

of the contracts defined using the unified framework for QoS policy management described

in Section B.2. These services will leverage and integrate mechanisms in the GIG

infrastructure that enable control over QoS on per-data-flow basis, where each pub/sub pair

can establish independent QoS contracts.

 48

Figure 28 illustrates the general approach, where different flows can specify their relative

importance and resource needs, which the GIG infrastructure is responsible for enforcing

given the operating conditions and competing requirements from other clients in the system.

To achieve these capabilities will require developing and evaluating mechanisms for

enabling QoS policies to be set (or overridden) at the service, topic, or publish/subscribe pair

level and enforced at multiple layers of the GIG infrastructure, e.g., the middleware, OS, and

network layers. It will also require developing and evaluating online and offline techniques

for determining whether the QoS offered by publishers/subscribers – and the resources

available from the infrastructure – can satisfy client requests, establishing the communication

paths on success or indicating an error on failure. Careful attention should be paid to QoS

techniques that run over IPv6 and use its DiffServ packet classification and IntServ flow

reservation mechanisms since IPv6 is slated to become the standard networking

infrastructure for the DoD.

Network latency
& bandwidth

Workload &
Replicas

CPU & memory

Connections &
priority bands

Network latency
& bandwidth

Workload &
Replicas

CPU & memory

Connections &
priority bands

Figure 28: Establishing QoS Data Flows Through the GIG

• Our experience benchmarking various Pub/Sub mechanisms in the Prometheus study to

produce the results shown in Figures 12, 13, and 14 underscored the fact that developing,

optimizing, and evolving Pub/Sub applications manually is tedious and error-prone. Key

 49

R&D challenges involve (1) quantitatively evaluating and exploring complex and dynamic

QoS problem/solution spaces to evolve effective solutions and (2) assuring QoS in face of

interactive and/or autonomous adaptation to fluid environments. We therefore recommend

that future R&D activities focus on creating and evaluating Model-Driven Development

(MDD) tools [38] that can significantly ease the task of creating new QoS-enabled

information management applications integrating them with existing artifacts in new and

larger contexts.

(A) System Design Tools (B) QA & Optimization Tools (C) Resource Management Tools

Figure 29: Design and Quality Assurance Tools

Figure 29 illustrates examples of MDD tools developed in prior efforts in the context of the

Real-time CORBA and Real-time CORBA Event Services shown in Figure 4. Figure 29(A)

illustrates design tools that specify QoS policies for a particular domain, system

representation, and/or software architecture [11]. Figure 29(B) illustrates tools for quality

assurance (QA), such as distributed continuous quality assurance [44]. Figure 29(C)

illustrates tools for resource management and visualization of resource usage, such as system

execution modeling [47]. We recommend that future R&D activities enhance these tools so

that the work with the new generation of QoS-enabled Pub/Sub platforms, such as OMG

DDS.

We also recommend that future R&D efforts benchmark standards- and COTS-based

technologies to compare different Pub/Sub platforms, as well as to pinpoint use cases and

environments in which one technology is better suited than others for particular missions and

tasks.

 50

6. Scalable Fault- and Intrusion-Tolerant Services

There is much research left to be done on the topic of scalable fault- and intrusion-tolerant

services. One example is their use in “multi-tier” applications in which one intrusion-tolerant

service becomes a client of others. Due to the distribution inherent in intrusion-tolerant services,

when such a service is acting as a client to another, access requests from individual client

replicas must be managed collectively, lest a request be performed multiple times or without

sufficient corroboration from correct client replicas. A second example is scalable approaches to

dynamically modify the server membership underlying an intrusion-tolerant service, e.g., to

seamlessly grow its capacity after it has been deployed. Finally, little is known about how to

position servers in a large-scale network to provide low-latency and low-congestion access for

clients. In fact, for quorum-based services, many such questions are NP-hard, and so heuristic or

approximations are needed.

We have identified several promising approaches to address challenges of scalable fault- and

intrusion-tolerant services.

6.1. Multi-tier Fault- and Intrusion-Tolerant Services

Most fault-/intrusion-tolerant services have investigated only single-tier services. Multi-tier

services, in which one service acts as a client to another, introduces additional complexities, such

as promoting a corrupted component of one service into a client of the other. Such corrupted

clients could potentially corrupt the service irreparably. We therefore need to investigate

approaches to implement multi-tier fault-/intrusion-tolerant services scalably.

 51

(1) (2) (3)(1) (2) (3)

Figure 30: Multi-tier Support for Fault- and Intrusion-Tolerant Services

Figure 30 illustrates a key challenge of multi-tier intrusion-tolerant services. In this particular

example, there are three replicas of two services (a red one and a green one). The client at the

left holds a handle (or stub) for accessing each service, but in this particular example, the client

passes the handle of the red service into the handle of the green service (step 1), thereby

propagating that handle down to the replicas of the green service (step 2). Now, an adversary

who corrupts a green replica obtains a handle for invoking the red service, essentially promoting

the adversary to be an authorized client of the red service, as well (step 3). Further research is

needed to understand how to most efficiently address this problem.

6.2. Dynamically Adjusting Membership in Fault- and Intrusion-Tolerant Services

Dynamic service membership has not been adequately examined in intrusion-tolerant systems, in

that services are typically defined over a static collection of servers. Dynamic membership might

enable the use of intrusion-tolerant access protocols in peer-to-peer environments, where services

are implemented over transient peers. To date there has been little investigation of this approach,

especially for quorum-based implementations. Yet the problem is fundamental: when we talk

 52

about discovery of a service the steps include first matching the client to some sort of service

description (for example, matching a client seeking “maps of Faluja” with such-and-such a

database), but then resolving the service identifier or name into a set of representatives that might

vary over time as nodes crash or recover and as loads vary, and then vectoring the request to a

specific service representative that will handle it, perhaps with further constraints, such as “this

request should go to the same representative that handled my last inquiry, if possible, to let it

exploit cached authentication certificates and speed up the access.” Thus we face a multi-layer,

secure, dynamic membership tracking and lookup requirement.

Figure 31: Dynamically Adjusting Membership in Fault- and Intrusion-Tolerant Services

Figure 31 describes the need to adjust the membership of a fault- and intrusion-tolerant service

dynamically. In this figure, time is running downward. The “X” denotes a crash or departure,

and the new (rightmost) server comes in to pick up the slack. The question is, what is the right

algorithm to seamlessly integrate the new server into the access protocol? This specific problem

has been studied in the context of gossip-based services such as the ones discussed earlier in this

report, and in the context of replication with strong properties such as virtual synchrony or one-

copy-serializability (the database replication model). Yet there has been surprisingly little work

on this question in the context of quorum-based services, particularly intrusion-tolerant ones.

 53

6.3. Deploying Quorum-based Services in Large-scale Systems

Deployment of scalable fault- and intrusion-tolerant services for GIG “systems-of-systems”

environments requires careful placement of servers. Placement should seek to minimize network-

centric costs (e.g., delay and congestion) for accessing the service from various parts of the

network. Applicability to GIG “systems-of-systems” demands attention to this problem, which is

currently very poorly understood.

f = ?
4

5

5

Logical quorums Physical network

Figure 32: Deploying Quorum-based Services in Large-scale Systems

Figure 32 shows the problem face when attempting to deploy a quorum-based service in a large-

scale system. A quorum-based protocol is expressed with accesses to logical quorums, i.e.,

accesses to logical subsets of servers. To deploy such a protocol in a real system, however, the

quorum elements must be mapped to physical machines. But what should this mapping be?

Ideally each quorum element would be placed to minimize some network-centric measures, e.g.,

the expected latency for, or congestion due to, client accesses. Additional research is needed to

address these questions.

7. Technology for Scalable Clustered Service Architectures

To address the challenges of developing scalable clustered services described in Section A.2.3.1,

we believe that the standard application-development tools and technologies will need to be

extended with add-ons targeting military applications and scenarios. For example, we are urging

that tools be created that would start with a standard service implemented in Web Services built

 54

using traditional tools with a WSDL file. These tools would analyze the WSDL file, solicit

additional input, & build a “cluster-enabled” version of the application. Data would then be

replicated within clusters of server nodes for scalability and load-balancing using component

composition tools and protocols with QoS assurances to automate the creation of a scalable, self-

managed solution. This is just one concrete example of the broader question and opportunity.

Tools of the nature we envision would lower the entry barrier for technology development in the

GIG-SoS arena and hence open the door to a wave of powerful solutions for major Air Force and

military needs.

ServerServer

WSDL file

ServerServer ServerServer ServerServer

ServerServer ServerServer ServerServer

Automatically produced
clustered service

Figure 33: Automating Service Clustering

Cornell’s work on the Tempest system can be understood as an initial foray into this important

and substantial part of the GIG/SoS space. Figure 33 revisits the Tempest scenario, which was

discussed in some detail earlier, but now with the aim of identifying opportunities beyond the

work already underway. On the top we see a picture of Tempest and how it might look to the

programmer: he or she develops the application in a standard way on a non-distributed platform.

 55

The role of Tempest is to take that initial solution and automatically transform it into a clustered

solution.

Earlier, we explained how Tempest actually works: it clones the user’s service and uses Ricochet

[8] as the core of a replication and data consistency protocol that ensures extremely rapid

response to incoming updates. With Ricochet, one arrives at a cluster with nice real-time

properties. But in fact one could also explore many other options, for example ones focused

mostly on consistency and with lower overheads but less good real-time properties and we may

go in the extreme reliability direction too using virtual synchrony as our “model”. Cornell’s

Tempest system will ultimately host a family of solutions and the first one we’re implementing

(with Ricochet as the protocol) emphasizes real-time; later we may explore other QoS

requirements within the same framework. We recommend that the Air Force consider launching

additional research efforts in this part of the design space, because we believe the payoffs to the

military could be enormous, and because we see these problems as solidly matched to near term

and rather specific needs arising in the Air Force and not seen in many other settings. For

example, Air Force’s requirements for time-critical response go well beyond those seen in most

military environments and arise on a much broader range of applications and services.

Development of powerful end-user oriented tools (GUIs) is an important research area in its own

right. An important insight one can gain from the SOA world is that developers have come to

expect and demand these kinds of tools. We can invent better technology and yet fail by offering

it in unpalatable forms. We need to learn to view the presentation of the solution as part of the

research!

8. Scalable Service/Server Discovery Architectures

To address the challenges of developing scalable service/server discovery architectures described

in Section A.2.3.2, we recommend the creation of an architecture and a supporting platform for

finding services in a massive system with huge numbers of clients, services, & policy governing

discovery. The recommended approach would be to describe services with UDDI, extended to

“service description ontology” and build a global-scale repository for maintaining these for later

search. Likewise, we recommend the development of a client query framework and also a

 56

managerial policy language for finding services, along with a scalable repository to implement

architecture and search techniques.

After this infrastructure is created, we recommend next considering the routing issues that arise

if a service exists in many places and the application has policy requirements governing the

binding of clients to service instances. In addition to routing, we need to explore the co-existence

of this new service/server discovery architecture in the context of Internet routing policies and

Internet DNS name resolution options.

Application
Program

Application
Program

Client-provided discovery
policy

Client-provided discovery
policy

Service-provided discovery
policy

Service-provided discovery
policy

Administrator-provided
management policy

Administrator-provided
management policy

Commander-provided
security policy

Commander-provided
security policy

Servers capable of responding to
the application request

Servers capable of responding to
the application request

• As each server is launched, it registers
itself with a “discovery subsystem” that
plays a role analogous to that of the
Internet DNS & then describes itself
using UDDI & specifies policies for
mapping clients to server instances

• Application program issues
a form of “query” seeking a

service with specified
characteristics, which is a

query over a UDDI database

• Research challenge: we now have four
kinds of competing “policies”.
GIG/NCES only standardizes UDDI, but
stops short of addressing this policy
reconciliation & binding process

• AF brings special additional issues of
mobility, wireless links, & real-time
response requirements

Figure 34: Challenges of Reconciling Discovery Policy Rules

Figure 34 illustrates the research challenges associated with reconciling “discovery policy” rules

that originate from many competing sources, some of which do not trust one-another!

Researchers have explored similar questions in other settings, for example in Andrew Myers’

work on JIF, a framework for writing policy and trust rules down and for compiling them into

distributed solutions. JIF could be a starting point for solutions in this critical application space.

 57

9. Summary of Recommendations

To summarize, our Prometheus study has explored a very substantial technology space. The

space is so broad, indeed, that it can be hard to discuss in any constrained way, since it spans (in

effect) all of modern distributed computing, quality of service, autonomic response and security.

We’re recommended what can be appreciated as a prioritized attack on problems that arise in this

environment:

1. The first priority should be to understand the manner in which GIG/NCES and SoS

technologies will be employed in future military systems such as the Air Force.

2. From this understanding, one can identify short-term practical questions that need to be

explored with demonstration and early prototyping efforts that seek to improve

understanding within the service research arms while also clarifying technology gaps.

3. We are already involved in many such efforts and reviewed representative examples here,

including work on scalability, real-time systems and clustered time-critical services, security

in depth, and other related topics. These are broad and significant topic areas but represent

just a narrow subset of the overall “space”.

4. From our own experiences and an analysis of the GIG/NCES technology trends we are able

to identify significant puzzles: areas in which relatively little is known and yet where Air

Force systems will need to offer superior solutions in the near term. We pointed to a number

of these and gave examples of why they are important.

5. Air Force work on the Joint Battlespace Infosphere (JBI) turns out to inform our inquiry in

important ways. This prior JBI research has elucidated such key questions as how one might

architect an information structure to ensure maximum compatibility between applications

developed independently but sharing a communications environment. Other JBI insights

include perspective into the central role of publish-subscribe in systems of the near future,

and an appreciation of how hard it will be scale solutions of this nature up to the necessary

size and complexity while also assuring that security will be maintained through pro-active

policy specification and enforcement, in-depth defense against attack or disruption, and so

forth.

 58

6. Against this set of steps, we illustrated the manner whereby a near-term and mid-term

research agenda can be extracted that is likely to have maximum short-range impact on

problems of the greatest possible importance to the Air Force. While we do not view the

research topics articulated here as exhaustive, we do think they are illustrative and that they

indeed capture a wide range of vital questions that must be answered if the Air Force is to be

assured of success in its own mission.

 59

10. Concluding Remarks

The challenges addressed by the Prometheus study revealed a very substantial research area. Our

Prometheus Team conducted a study, produced reports and annotated briefings, and laid out a

roadmap aimed at helping AFRL take the GIG down the right path. The material presented in

this final report was presented to the AFRL Science Advisory Board in November, 2005.

A key to the success of this and future R&D efforts on the GIG is a recognition of the vital

importance of picking paths that can be pursued in the right time frame and can be transitioned to

DoD systems integrators and COTS/GOTS suppliers in the relatively near term. Prometheus

identified a wide range of problems and challenges, but also performed triage on various

promising solution technologies (such as QoS-enabled QOS and Pub/Sub). Our efforts focused

on understanding what could already be done today using state-of-the-art technologies in best-of-

breed ways. This final report laid out a set of concrete objectives based on experimental proof-

of-concepts and feasibility studies that (1) represent moderate risk, high payoff steps for the GIG

and (2) benefit the Air Force GIG strategy in measurable and tangible ways.

..

if (inactiveInterval != -1) {
int thisInterval =

(int)(System.currentTimeMillis(
) - lastAccessed) / 1000;

if (thisInterval >
inactiveInterval) {

invalidate();

ServerSessionManager ssm =

ServerSessionManager.getManager
();

ssm.removeSession(this);
}

}
}

private long lastAccessedTime
= creationTime;
/**

Figure 35: Future GIG QoS Needs Require Innovations in Both Platforms and Tools

Technology transitioning may be an issue that needs attention. Groups like ours at Cornell,

Vanderbilt and CMU typically limit themselves to technology prototypes and even when they are

useful and we make them available, they aren’t products. People who download them for free

 60

will need to expect to get what they pay for (namely limited documentation, limited support…).

Thus academic research is needed, but is unlikely to press beyond the stage of showing how to

break through technology barriers and how the solutions can still look natural. Even when such

work is successful, unless the development team takes the step of starting a company to

commercialize something (and we do, but not always) the work most often becomes commercial

through partnerships with major vendors like Microsoft or with integrators like Telcordia,

Raytheon, Boeing, and so forth. We feel that the Prometheus study needs to emphasize that

sometimes, incredibly desirable technologies just need a sort of maturation process and pipeline

and that University research is only one stage in that pipeline. AFRL will need to be attentive to

this issue and explore options for creating such pipelines, with the University efforts partnering

with vendors.

 61

References

[1] Abraham, I., D. Malkhi. Probabilistic Quorums for Dynamic Systems. In the 17th
International Symposium on Distributed Computing (DISC 2003), Sorento, Italy, October
2003.

[2] Aguilera, M.K., Strom, R.E., Sturman, D.C., Astley, M., Chandra, T.D.. “Matching

Events in a Content-based Subscription System”. 18th ACM Symposium on Principles of
Distributed Computing (PODC), Atlanta, GA. 1999.

[3] Alvisi, L., D. Malkhi, E. Pierce, M. Reiter. Fault Detection for Byzantine Quorum Systems.

IEEE Transactions on Parallel and Distributed Systems 12(9):996—1007, 2001.

[4] Amir, Y., C. Nita-Rotaru, J. Stanton, G. Tsudik. Scaling Secure Group Communication:

Beyond Peer-to-Peer Proceedings of DISCEX3 Washington DC, April 22-24, 2003.

[5] Anceaume, E., B. Charron-Bost, P. Minet, and S. Toueg. “On the Formal Specification of

Group Membership Services.” Technical Report 95-1534. Department of Computer
Science, Cornell University, August 1995.

[6] Andersen, D., H. Balakrishnan, M. F. Kaashoek, R. Morris. Resilient Overlay Networks.

Proceedings of the Symposium on Operating Systems Principles 17, 131-145, Vancouver,
CA, Oct. 2001.

[7] Bailey, N. The Mathematical Theory of Epidemic Diseases, 2d ed. London: Charles Griffen

and Company, 1975.

[8] Balakrishnan, Birman, Phanishayee, and Pleisch. Ricochet: Low-Latency Multicast for

Scalable Time-Critical Services. In Submission. 2005

[9] Balakrishnan, Pleisch, Birman. “Slingshot: Time-Critical Multicast for Clustered

Applications,” IEEE Network Computing and Applications 2005 (NCA 05). Boston, MA

[10] Balazinska, Balakrishnan, and Karger. INS/Twine: A Scalable Peer-to-Peer Architect ure

for Intentional Resource Discovery Pervasive 2002 - I–ternational Conference on Pervasive
Computing, Zurich, Switzerland, August 2002. © Springer-Verlag.

[11] Balasubramanian, Krishnakumar, Jaiganesh Balasubramanian, Jeff Parsons, Aniruddha

Gokhale, Douglas C. Schmidt, “A Platform-Independent Component Modeling Language
for Distributed Real-time and Embedded Systems,” Proceedings of the 11th IEEE Real-
Time and Embedded Technology and Applications Symposium, San Francisco, CA, March
2005.

 62

[12] Birman, K.P. Reliable Distributed Systems Technologies, Web Services, and Applications..

2005, XXXVI, 668 p. 145 illus., Hardcover ISBN: 0-387-21509-3

[13] Birman, K.P.. The Untrustworthy Services Revolution. To appear, February 2006, IEEE

Computer.

[14] Birman, K.P. Can Web Services Scale Up? Ken Birman. IEEE Computer. Volume 38.

Number 10. Pgs.107-110. October 2005

[15] Birman, K.P., Hillman, R., Pleisch, S. Building network-centric military applications over

service oriented architectures. SPIE Defense and Security Symposium 2005. March 29-31,
2005. Orlando, Florida.

[16] Birman, K.P. “A Review of Experiences with Reliable Multicast.” Software Practice and

Experience Vol. 29, No. 9, pp, 741-774, July 1999.

[17] Birman, K.P., Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai Budiu and Yaron Minsky.

“Bimodal Multicast.” ACM Transactions on Computer Systems, Vol. 17, No. 2, pp 41-88,
May, 1999.

[18] Birman, K. P., and T. A. Joseph. “Exploiting Virtual Synchrony in Distributed Systems.”

Proceedings of the Eleventh Symposium on Operating Systems Principles (Austin,
November 1987). New York: ACM Press, 123-138.

[19] Bauer, L., S. Garriss and M. K. Reiter, “Distributed Proving in Access-Control Systems,”

In Proceedings of the 2005 IEEE Symposium on Security and Privacy, pages 81-95, May
2005.

[20] Bauer, L, S. Garriss, J. McCune, M. K. Reiter, J. Rouse and P. Rutenbar, “Device-enabled

Authorization in the Grey System,” In Information Security: 8th International Conference,
ISC 2005 (Lecture Notes in Computer Science 3650), pages 431?446, Springer-Verlag,
September 2005.

[21] Castro, M., B. Liskov: Practical Byzantine Fault Tolerance and Proactive Recovery. ACM

Transactions on Computer Systems (TOCS) 20(4): 398-461 (2002)

 63

[22] Castro, M., R. Rodrigues, B. Liskov: BASE: Using abstraction to improve fault tolerance.
TOCS 21(3): 236-269 (2003)

[23] Chandra, T., and S. Toueg. “Unreliable Failure Detectors for Asynchronous Systems.”

Journal of the ACM, in press. Previous version in ACM Symposium on Principles of
Distributed Computing (Montreal, 1991), 325-340.

[24] Demers, A. et al. “Epidemic Algorithms for Replicated Data Management.” Proceedings of

the Sixth Symposium on Principles of Distributed Computing, (Vancouver, August 1987):
1-12. Also Operating Systems Review 22:1 (January 1988): 8-32.

[25] Dolev, D., and D. Malkhi. “The Transis Approach to High Availability Cluster

Communication.” Communications of the ACM 39:4 (April 1996): 64-70.

[26] Dolev, D., D. Malkhi, and R. Strong. “A Framework for Partitionable Membership

Service.” Technical Report TR 95-4. Institute of Computer Science, Hebrew University of
Jerusalem, March 1995.

[27] Ghemawat, S; Gobioff, H; and Leung, S.T. “File and storage systems: The Google file

system”. 19th ACM Symposium on Operating Systems Principles (SOSP), Bolton Landing,
NY. October 2003.

[28] Gill, Christopher D., Douglas C. Schmidt, and Ron Cytron, “Multi-Paradigm Scheduling

for Distributed Real-time Embedded Computing,” IEEE Proceedings, October 2002.

[29] Gray, J., J. Bartlett, and R. Horst. “Fault Tolerance in Tandem Computer Systems.” The

Evolution of Fault-Tolerant Computing, A. Avizienis, H. Kopetz, and J. C. Laprie, eds.
Springer-Verlag, 1987.

[30] Gray, J., Helland, P., and Shasha, D. “Dangers of Replication and a Solution”. ACM

SIGMOD International Conference on Management of Data. Montreal, Quebec, Canada.
June, 1996.

[31] Gray, J., and A. Reuter. Transaction Processing: Concepts and Techniques. San Mateo,

CA: Morgan Kaufmann, 1993.

 64

[32] Gupta, I., A.M. Kermarrec, A.J. Ganesh. “Efficient Epidemic-Style Protocols for Reliable

and Scalable Multicast.” Proceedings of the 21st Symposium on Reliable Distributed
Systems (SRDS 02), Osaka, Japan. October 2002. pp. 180-189.

[33] Gupta, I., K.P. Birman, P. Linga, A. Demers, R. Van Renesse. “Kelips: Building an

Efficient and Stable P2P DHT Through Increased Memory and Background Overhead.”.
Proc. 2nd International Workshop on Peer-to-Peer Systems (IPTPS ‘03), Oakland CA,
2003.

[34] Harrison, Timothy H., David L. Levine, and Douglas C. Schmidt, “The Design and

Performance of a Real-time CORBA Event Service,” Proceedings of OOPSLA ‘97, Atlanta,
GA, October 1997.

[35] Holliday, J., D. Agrawal, A. El Abbadi: The Performance of Database Replication with

Group Multicast. FTCS 1999: 158-165

[36] Holliday, J., D. Agrawal, A. El Abbadi: “Partial Database Replication using Epidemic

Communication.” ICDCS 2002: 485.

[37] Krishna, Arvind S., Emre Turkay, Aniruddha Gokhale, and Douglas C. Schmidt, “Model-

Driven Techniques for Evaluating the QoS of Middleware Configurations for DRE
Systems,” Proceedings of the 11th IEEE Real-Time and Embedded Technology and
Applications Symposium, San Francisco, CA, March 2005.

[38] Krishna, Arvind S., Cemal Yilmaz, Atif Memon, Adam Porter, Douglas C. Schmidt, Aniruddha

Gokhale, and Balachandran Natarajan, “A Model-Driven Approach to Ensuring Continuity of
Critical Properties in Distributed Systems,” IEEE Software special issue on the Persistent
Software Attributes, Nov/Dec 2004.

[39] Kubiatowicz, J. et. Al.: OceanStore: An Architecture for Global-Scale Persistent Storage.

Proceedings of Architectural Support for Progamming Languages and Systems (ASPLOS)
2000, 190-201

 65

[40] Kubiatowicz, J., D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S.
Rhea, H. Weatherspoon, W. Weimer, C. Wells, B. Zhao. “OceanStore: An Architecture for
Global-Scale Persistent Storage.” Proceedings of ACM ASPLOS, 2000.

[41] Lampson, B. “Hints for Computer System Design.” Proceedings of the Ninth Symposium

on Operating Systems Principles (Bretton Woods, NH, October 1993), 33-48.

[42] Lampson, B., Abadi, M., Burrows, M. and Wobber, T. Authentication in distributed

systems: Theory and practice. ACM Transactions on Computer Systems 10(4), November
1992.

[43] Marian, T., Birman K, and van Renesse, R. A Scalable Services Architecture. In

submission.

[44] Memon, Atif, Adam Porter, Cemal Yilmaz, Adithya Nagarajan, Douglas C. Schmidt, and

Bala Natarajan, Skoll: Distributed Continuous Quality Assurance, Proceedings of the 26th
IEEE/ACM International Conference on Software Engineering, Edinburgh, Scotland, May
2004.

[45] Oki, B., M. Pfluegl, A. Siegel, and D. Skeen. “The Information Bus—An Architecture for

Extensible Distributed Systems.” Proceedings of the Thirteenth ACM Symposium on
Operating Systems Principles (Asheville, NC, December 1993). New York: ACM Press,
58-68.

[46] Ostrowski, Birman, and Phanishayee. The Power of Indirection: Achieving Multicast

Scalability by Mapping Groups to Regional Underlays. In submission.

[47] Paunov, Stoyan, James Hill, Douglas C. Schmidt, John Slaby, and Steve Baker, “Domain-

Specific Modeling Languages for Configuring and Evaluating Enterprise DRE System
Quality of Service,” Proceedings of the 13th Annual IEEE International Conference and
Workshop on the Engineering of Computer Based Systems (ECBS ‘06), Potsdam,
Germany, March 2006.

[48] Pittel, B. “On Spreading of a Rumor.” SIAM Journal of Applied Mathematics 47:1 (1987):

213-223.

 66

[49] Pyarali, Irfan, Douglas C. Schmidt, and Ron Cytron, “Techniques for Enhancing Real-time
CORBA Quality of Service,” the IEEE Proceedings Special Issue on Real-time Systems,
May 2003, co-edited by Yann-Hang Lee and C. M. Krishna.

[50] Reiter, M. K., and K. P. Birman. “How to Securely Replicate Services.” ACM Transactions

on Programming Languages and Systems 16:3 (May 1994): 986-1009.

[51] Reiter, M. K., K. P. Birman, and L. Gong. “Integrating Security in a Group-Oriented

Distributed System.” Proceedings of the IEEE Symposium on Research in Security and
Privacy (Oakland, May 1992). New York: IEEE Computer Society Press, 18-32.

[52] Reiter, M. K., K. P. Birman, and R. van Renesse. “A Security Architecture for Fault-

Tolerant Systems.” ACM Transactions on Computing Systems, May 1995.

[53] Rowstron, A. and P. Druschel, “Pastry: Scalable, distributed object location and routing

for large-scale peer-to-peer systems”. IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), Heidelberg, Germany, pages 329-350, November, 2001.

[54] Rowstron, A., and Druschel, P.. “Storage management and caching in PAST, a large scale,

persistent peer-to-peer storage utility”. 18th ACM Symposium on Operating Systems
Principles (SOSP), Banff, Canada. October 2001

[55] Rowstron, A., A.M. Kermarrec, M. Castro, P. Druschel: SCRIBE: The Design of a Large-

Scale Event Notification Infrastructure. Second International Workshop on Networked
Group Communication, Oakland CA, 2001: 30-43

[56] Rowstron, A., Kermarrec, A.M., Druschel, P., and Castro, M.. “SCRIBE: A large-scale

and decentralized application-level multicast infrastructure”. IEEE Journal on Selected
Areas in communications (JSAC), 2002.

[57] Rowstron, A. and P. Druschel. “Storage management and caching in PAST, a large-scale,

persistent peer-to-peer storage utility”, ACM Symposium on Operating Systems Principles
(SOSP’01), Banff, Canada, October 2001.

 67

[58] Van Renesse, R. and Johansen, H. “Fireflies: Scalable Support for Intrusion-Tolerant
Overlay Networks,” To appear, Operating Systems Design and Implementation (OSDI)
2006

[59] van Renesse, R., K.P. Birman and W. Vogels. “Astrolabe: A Robust and Scalable

Technology for Distributed System Monitoring, Management, and Data Mining.” ACM
Transactions on Computer Systems, May 2003, Vol.21, No. 2, pp 164-206

[60] van Renesse, R., K.P Birman, D. Dumitriu, and W. Vogels. “Scalable Management and

Data Mining Using Astrolabe.” Proceedings of the First International Workshop on Peer-
to-Peer Systems (IPTPS). Cambridge, Massachusetts. March 2002.

[61] van Renesse, R., K. P. Birman, R. Friedman, M. Hayden, and D. Karr. “A Framework for

Protocol Composition in Horus.” Proceedings of the Fourteenth Symposium on the
Principles of Distributed Computing (Ottawa, August 1995). New York: ACM Press, 80-
89.

[62] van Renesse, R., K. P. Birman, and S. Maffeis. “Horus: A Flexible Group Communication

System.” Communications of the ACM 39:4 (April 1996): 76-83.

[63] Schantz, Richard, Franklin Webber, Partha Pal, Joseph Loyall, and Douglas C. Schmidt,

“Protecting Applications Against Malice with Adaptive Middleware,” Certification and
Security in E-Services stream of the 17th IFIP World Computer Congress, Montreal,
Canada, August 25-30, 2002.

[64] W. Vogels, Birman, K., R. Van Renesse. “Six Misconceptions about Reliable Distributed

Computing.” Proceedings of the Eighth ACM SIGOPS European Workshop. Sintra,
Portugal, September 1998.

[65] Zhao, B., Y. Duan, L. Huang, A. D. Joseph, J. Kubiatowicz. Brocade: Landmark Routing

on Overlay Networks. IPTPS 2002, 34-44

[66] Zhao, B., L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. Kubiatowicz. “Tapestry:

A Resilient Global-scale Overlay for Service Deployment”, IEEE Journal on Selected
Areas in Communication.

 68

[67] Zhao, B. Y. Duan, L. Huang, A.D. Joseph and J.D. Kubiatowicz. “Brocade: landmark

routing on overlay networks”, First International Workshop on Peer-to-Peer Systems
(IPTPS), Cambridge, MA. March 2002.

[68]

 69

Acronyms

AAW Anti-Air Warfare
AF Air Force
AFOSR Air Force Office of Scientific Research
AFRL Air Force Research Laboratory
API Application Programming Interface
APPC Advanced Program to Program Communications
ATG Automatic Tactic Generation
BFT Byzantine Fault Tolerance
C2 Command and Control
C4ISR Command, Control, Communications, Computers, Intelligence, Reconnaissance

and Surveillance
CMU Carnegie Mellon University
COI Community of Interest
CORBA Common Object Request Broker Architecture
COTS Commercial, Off-the-Shelf
CPU Central Processing Unit
DARPA Defense Advanced Research Project Agency
DDoS Distribued Denial of Service
DDS Data Distribution Service
DISA Defense Information Systems Agency
DNS Domain Name Server
DoD Department of Defense
FCS Future Combat System
FEC Forward Error Correction
FTP File Transfer Protocol
GCC GNU Compiler Collection
GIG Global Information Grid
GOTS Government Off-the-Shelf
GUI Graphical User Interface
HIMARS High Mobility Artillery Rocket System
HTTP HyperText Transfer Protocol
IPC Interprocess Communication
IAI Information Assurance Institute
I/O Input/Output
IP Internet Protocol
J2EE Java 2 Enterprise Edition
JBI Joint Battlespace Infosphere
JDAM Joint Directed Attack Munition
JIF Java + Information Flow
JMS Java Messaging Service
JSF Joint Strike Fighter

 70

LAN Local Area Network
LCS Littoral Combat Ship
MDD Model-Driven Development
MLRS Multi-Launch Rocket System
NCES Network-Centric Enterprise Systems
NDDS Network Data Distribution Service
NP Non-Polynomial
NSA National Security Agency
OCC Operations Center Commander
OMG Object Management Group
OS Operating System
P2P Peer-to-Peer
PCES Program Composition of Embedded Systems
PRET Partnerships for Research Excellence and Transition
QA Quality Assurance
QoS Quality of Service
Q/U Query/Update
R&D Research and Development
RMI Remote Method Invocation
RPC Remote Procedure Call
RT Real Time
RTOS Real Time Operating System
SOA Service-Oriented Architectures
SOAP Simple Object Access Protocol
SoS Systems of Systems
SSDS Ship Self Defense System
TBMD Theatre Ballistic Missile Defense
UAV Unmanned Aerial Vehicle
UDDI Universal Description, Discovery and Integration
WSDL Web Services Description Language
WSMR White Sands Missile Range
XML eXtensible Markup Language

